BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 29059215)

  • 1. DNA metabarcoding reveals diverse diet of the three-spined stickleback in a coastal ecosystem.
    Jakubavičiūtė E; Bergström U; Eklöf JS; Haenel Q; Bourlat SJ
    PLoS One; 2017; 12(10):e0186929. PubMed ID: 29059215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Niche partitioning between planktivorous fish in the pelagic Baltic Sea assessed by DNA metabarcoding, qPCR and microscopy.
    Novotny A; Jan KMG; Dierking J; Winder M
    Sci Rep; 2022 Jun; 12(1):10952. PubMed ID: 35768563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escaping malnutrition by shifting habitats: A driver of three-spined stickleback invasion in Lake Constance.
    Baer J; Ziegaus S; Schumann M; Geist J; Brinker A
    J Fish Biol; 2024 Mar; 104(3):746-757. PubMed ID: 37984830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All day-long: Sticklebacks effectively forage on whitefish eggs during all light conditions.
    Baer J; Gugele SM; Bretzel J; DeWeber JT; Brinker A
    PLoS One; 2021; 16(8):e0255497. PubMed ID: 34339467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Declining coastal piscivore populations in the Baltic Sea: Where and when do sticklebacks matter?
    Byström P; Bergström U; Hjälten A; Ståhl S; Jonsson D; Olsson J
    Ambio; 2015 Jun; 44 Suppl 3(Suppl 3):462-71. PubMed ID: 26022328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Late Pleistocene stickleback environmental genomes reveal the chronology of freshwater adaptation.
    Laine J; Mak SST; Martins NFG; Chen X; Gilbert MTP; Jones FC; Pedersen MW; Romundset A; Foote AD
    Curr Biol; 2024 Mar; 34(5):1142-1147.e6. PubMed ID: 38350445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem.
    Rudman SM; Rodriguez-Cabal MA; Stier A; Sato T; Heavyside J; El-Sabaawi RW; Crutsinger GM
    Proc Biol Sci; 2015 Aug; 282(1812):20151234. PubMed ID: 26203004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population genomic evidence for adaptive differentiation in Baltic Sea three-spined sticklebacks.
    Guo B; DeFaveri J; Sotelo G; Nair A; Merilä J
    BMC Biol; 2015 Mar; 13():19. PubMed ID: 25857931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using DNA Metabarcoding to Characterize the Prey Spectrum of Two Co-Occurring
    Dischereit A; Wangensteen OS; Præbel K; Auel H; Havermans C
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36360272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback.
    Ishikawa A; Takeuchi N; Kusakabe M; Kume M; Mori S; Takahashi H; Kitano J
    J Evol Biol; 2013 Jul; 26(7):1417-30. PubMed ID: 23663028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay of individual interactions and turbidity affects the functional response of three-spined sticklebacks Gasterosteus aculeatus.
    Vollset KW; Bailey KM
    J Fish Biol; 2011 Jun; 78(7):1954-64. PubMed ID: 21651543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of Japanese three-spined stickleback clades reveals the Pacific Ocean lineage has adapted to freshwater environments while the Japan Sea has not.
    Ravinet M; Takeuchi N; Kume M; Mori S; Kitano J
    PLoS One; 2014; 9(12):e112404. PubMed ID: 25460163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple waves of freshwater colonization of the three-spined stickleback in the Japanese Archipelago.
    Kakioka R; Mori S; Kokita T; Hosoki TK; Nagano AJ; Ishikawa A; Kume M; Toyoda A; Kitano J
    BMC Evol Biol; 2020 Nov; 20(1):143. PubMed ID: 33143638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locomotory capacity of Baltic Sea and freshwater populations of the threespine stickleback (Gasterosteus aculeatus).
    Schaarschmidt T; Jürss K
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Jul; 135(3):411-24. PubMed ID: 12829049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation.
    Matthews B; Marchinko KB; Bolnick DI; Mazumder A
    Ecology; 2010 Apr; 91(4):1025-34. PubMed ID: 20462117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population transcriptomics reveals weak parallel genetic basis in repeated marine and freshwater divergence in nine-spined sticklebacks.
    Wang Y; Zhao Y; Wang Y; Li Z; Guo B; Merilä J
    Mol Ecol; 2020 May; 29(9):1642-1656. PubMed ID: 32285491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the secret diets of siphonophores (Cnidaria: Hydrozoa) using DNA metabarcoding.
    Damian-Serrano A; Hetherington ED; Choy CA; Haddock SHD; Lapides A; Dunn CW
    PLoS One; 2022; 17(5):e0267761. PubMed ID: 35594271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predator-prey role reversal may impair the recovery of declining pike populations.
    Nilsson J; Flink H; Tibblin P
    J Anim Ecol; 2019 Jun; 88(6):927-939. PubMed ID: 30895606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement.
    Jeunen GJ; Knapp M; Spencer HG; Lamare MD; Taylor HR; Stat M; Bunce M; Gemmell NJ
    Mol Ecol Resour; 2019 Mar; 19(2):426-438. PubMed ID: 30576077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and spatial trends in prey composition of wahoo Acanthocybium solandri: a diet analysis from the central North Pacific Ocean using visual and DNA bar-coding techniques.
    Oyafuso ZS; Toonen RJ; Franklin EC
    J Fish Biol; 2016 Apr; 88(4):1501-23. PubMed ID: 27059148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.