These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 29059300)
1. Thioflavin T binds dimeric parallel-stranded GA-containing non-G-quadruplex DNAs: a general approach to lighting up double-stranded scaffolds. Liu S; Peng P; Wang H; Shi L; Li T Nucleic Acids Res; 2017 Dec; 45(21):12080-12089. PubMed ID: 29059300 [TBL] [Abstract][Full Text] [Related]
2. Lighting Up the Thioflavin T by Parallel-Stranded TG(GA) n DNA Homoduplexes. Zhu J; Yan Z; Zhou W; Liu C; Wang J; Wang E ACS Sens; 2018 Jun; 3(6):1118-1125. PubMed ID: 29749724 [TBL] [Abstract][Full Text] [Related]
3. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. Mohanty J; Barooah N; Dhamodharan V; Harikrishna S; Pradeepkumar PI; Bhasikuttan AC J Am Chem Soc; 2013 Jan; 135(1):367-76. PubMed ID: 23215453 [TBL] [Abstract][Full Text] [Related]
4. A highly sensitive label-free sensor for Mercury ion (Hg²⁺) by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer. Ge J; Li XP; Jiang JH; Yu RQ Talanta; 2014 May; 122():85-90. PubMed ID: 24720966 [TBL] [Abstract][Full Text] [Related]
5. Parallel [TG(GA) Liu Q; Jing S; Liu M; Jin Y; Li B Analyst; 2019 Dec; 145(1):286-294. PubMed ID: 31750449 [TBL] [Abstract][Full Text] [Related]
6. Molecular rotor-based fluorescent probe for selective recognition of hybrid G-quadruplex and as a K+ sensor. Liu L; Shao Y; Peng J; Huang C; Liu H; Zhang L Anal Chem; 2014 Feb; 86(3):1622-31. PubMed ID: 24405563 [TBL] [Abstract][Full Text] [Related]
7. Thioflavin T as a fluorescence light-up probe for both parallel and antiparallel G-quadruplexes of 29-mer thrombin binding aptamer. Li Y; Xu S; Wu X; Xu Q; Zhao Y; Lou X; Yang X Anal Bioanal Chem; 2016 Nov; 408(28):8025-8036. PubMed ID: 27590320 [TBL] [Abstract][Full Text] [Related]
8. Multiple and cooperative binding of fluorescence light-up probe thioflavin T with human telomere DNA G-quadruplex. Gabelica V; Maeda R; Fujimoto T; Yaku H; Murashima T; Sugimoto N; Miyoshi D Biochemistry; 2013 Aug; 52(33):5620-8. PubMed ID: 23909872 [TBL] [Abstract][Full Text] [Related]
9. Stable label-free fluorescent sensing of biothiols based on ThT direct inducing conformation-specific G-quadruplex. Tong LL; Li L; Chen Z; Wang Q; Tang B Biosens Bioelectron; 2013 Nov; 49():420-5. PubMed ID: 23807235 [TBL] [Abstract][Full Text] [Related]
10. Selective recognition of ds-DNA cavities by a molecular rotor: switched fluorescence of thioflavin T. Liu L; Shao Y; Peng J; Liu H; Zhang L Mol Biosyst; 2013 Oct; 9(10):2512-9. PubMed ID: 23903702 [TBL] [Abstract][Full Text] [Related]
11. A label-free fluorescent biosensor for ultratrace detection of terbium (ш) based on structural conversion of G-quadruplex DNA mediated by ThT and terbium (ш). Chen Q; Zuo J; Chen J; Tong P; Mo X; Zhang L; Li J Biosens Bioelectron; 2015 Oct; 72():326-31. PubMed ID: 26002017 [TBL] [Abstract][Full Text] [Related]
12. Direct visualization of nucleolar G-quadruplexes in live cells by using a fluorescent light-up probe. Zhang S; Sun H; Chen H; Li Q; Guan A; Wang L; Shi Y; Xu S; Liu M; Tang Y Biochim Biophys Acta Gen Subj; 2018 May; 1862(5):1101-1106. PubMed ID: 29410183 [TBL] [Abstract][Full Text] [Related]
13. Minimal thioflavin T modifications improve visual discrimination of guanine-quadruplex topologies and alter compound-induced topological structures. Kataoka Y; Fujita H; Kasahara Y; Yoshihara T; Tobita S; Kuwahara M Anal Chem; 2014 Dec; 86(24):12078-84. PubMed ID: 25417850 [TBL] [Abstract][Full Text] [Related]
14. Thioflavin T as an Efficient G-Quadruplex Inducer for the Highly Sensitive Detection of Thrombin Using a New Föster Resonance Energy Transfer System. Liu X; Hua X; Fan Q; Chao J; Su S; Huang YQ; Wang L; Huang W ACS Appl Mater Interfaces; 2015 Aug; 7(30):16458-65. PubMed ID: 26173915 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic studies of Thioflavin-T binding to c-Myc G-quadruplex DNA. Verma S; Ghuge SA; Ravichandiran V; Ranjan N Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():388-395. PubMed ID: 30703662 [TBL] [Abstract][Full Text] [Related]
16. Ethyl-substitutive Thioflavin T as a highly-specific fluorescence probe for detecting G-quadruplex structure. Guan AJ; Zhang XF; Sun X; Li Q; Xiang JF; Wang LX; Lan L; Yang FM; Xu SJ; Guo XM; Tang YL Sci Rep; 2018 Feb; 8(1):2666. PubMed ID: 29422637 [TBL] [Abstract][Full Text] [Related]
17. A Thioflavin T-induced G-Quadruplex Fluorescent Biosensor for Target DNA Detection. Zhang XF; Xu HM; Han L; Li NB; Luo HQ Anal Sci; 2018; 34(2):149-153. PubMed ID: 29434099 [TBL] [Abstract][Full Text] [Related]
18. Fluorescent sensor for monitoring structural changes of G-quadruplexes and detection of potassium ion. Kong DM; Ma YE; Guo JH; Yang W; Shen HX Anal Chem; 2009 Apr; 81(7):2678-84. PubMed ID: 19271760 [TBL] [Abstract][Full Text] [Related]
19. Label-free one-step fluorescent method for the detection of endonuclease activity based on thioflavin T/G-quadruplex. Tang Z; Liu H; Chen M; Ma C Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117823. PubMed ID: 31767417 [TBL] [Abstract][Full Text] [Related]
20. Comparative evaluation and design of a G-triplex/thioflavin T-based molecular beacon. Gao J; Liu Q; Liu W; Jin Y; Li B Analyst; 2021 Apr; 146(8):2567-2573. PubMed ID: 33899063 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]