These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 29059446)
1. Action Spectrum of Photoinhibition in the Diatom Phaeodactylum tricornutum. Havurinne V; Tyystjärvi E Plant Cell Physiol; 2017 Dec; 58(12):2217-2225. PubMed ID: 29059446 [TBL] [Abstract][Full Text] [Related]
2. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
3. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
4. Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure. Domingues N; Matos AR; Marques da Silva J; Cartaxana P PLoS One; 2012; 7(6):e38162. PubMed ID: 22675519 [TBL] [Abstract][Full Text] [Related]
5. Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Sarvikas P; Hakala M; Pätsikkä E; Tyystjärvi T; Tyystjärvi E Plant Cell Physiol; 2006 Mar; 47(3):391-400. PubMed ID: 16415063 [TBL] [Abstract][Full Text] [Related]
6. Changes in the photosynthetic reaction centre II in the diatom Phaeodactylum tricornutum result in non-photochemical fluorescence quenching. Eisenstadt D; Ohad I; Keren N; Kaplan A Environ Microbiol; 2008 Aug; 10(8):1997-2007. PubMed ID: 18397307 [TBL] [Abstract][Full Text] [Related]
7. System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum. Valle KC; Nymark M; Aamot I; Hancke K; Winge P; Andresen K; Johnsen G; Brembu T; Bones AM PLoS One; 2014; 9(12):e114211. PubMed ID: 25470731 [TBL] [Abstract][Full Text] [Related]
8. Effects of excess light energy on excitation-energy dynamics in a pennate diatom Phaeodactylum tricornutum. Nagao R; Ueno Y; Yokono M; Shen JR; Akimoto S Photosynth Res; 2019 Sep; 141(3):355-365. PubMed ID: 30993504 [TBL] [Abstract][Full Text] [Related]
9. Structural features of the diatom photosystem II-light-harvesting antenna complex. Wang W; Zhao S; Pi X; Kuang T; Sui SF; Shen JR FEBS J; 2020 Jun; 287(11):2191-2200. PubMed ID: 31854056 [TBL] [Abstract][Full Text] [Related]
10. Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions. Kuzminov FI; Gorbunov MY Photosynth Res; 2016 Feb; 127(2):219-35. PubMed ID: 26220363 [TBL] [Abstract][Full Text] [Related]
11. Pigment organization effects on energy transfer and Chl a emission imaged in the diatoms C. meneghiniana and P. tricornutum in vivo: a confocal laser scanning fluorescence (CLSF) microscopy and spectroscopy study. Premvardhan L; Réfrégiers M; Büchel C J Phys Chem B; 2013 Sep; 117(38):11272-81. PubMed ID: 23844975 [TBL] [Abstract][Full Text] [Related]
12. Molecular basis of chromatic adaptation in pennate diatom Phaeodactylum tricornutum. Herbstová M; Bína D; Koník P; Gardian Z; Vácha F; Litvín R Biochim Biophys Acta; 2015; 1847(6-7):534-43. PubMed ID: 25748970 [TBL] [Abstract][Full Text] [Related]
13. The Effects of Excess Irradiance on Photosynthesis in the Marine Diatom Phaeodactylum tricornutum. Ting CS; Owens TG Plant Physiol; 1994 Oct; 106(2):763-770. PubMed ID: 12232368 [TBL] [Abstract][Full Text] [Related]
14. Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. Nymark M; Valle KC; Hancke K; Winge P; Andresen K; Johnsen G; Bones AM; Brembu T PLoS One; 2013; 8(3):e58722. PubMed ID: 23520530 [TBL] [Abstract][Full Text] [Related]
15. Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. Wagner H; Jakob T; Lavaud J; Wilhelm C Photosynth Res; 2016 May; 128(2):151-61. PubMed ID: 26650230 [TBL] [Abstract][Full Text] [Related]
16. The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV J Exp Bot; 2021 Feb; 72(2):561-575. PubMed ID: 33068431 [TBL] [Abstract][Full Text] [Related]
17. Ultraviolet radiation reduces the photoprotective capacity of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae, Heterokontophyta). Halac S; García-Mendoza E; Banaszak AT Photochem Photobiol; 2009; 85(3):807-15. PubMed ID: 19140893 [TBL] [Abstract][Full Text] [Related]
18. Faster recovery of a diatom from UV damage under ocean acidification. Wu Y; Campbell DA; Gao K J Photochem Photobiol B; 2014 Nov; 140():249-54. PubMed ID: 25173760 [TBL] [Abstract][Full Text] [Related]
19. Dynamic Changes between Two LHCX-Related Energy Quenching Sites Control Diatom Photoacclimation. Taddei L; Chukhutsina VU; Lepetit B; Stella GR; Bassi R; van Amerongen H; Bouly JP; Jaubert M; Finazzi G; Falciatore A Plant Physiol; 2018 Jul; 177(3):953-965. PubMed ID: 29773581 [TBL] [Abstract][Full Text] [Related]
20. Photosystem II repair in marine diatoms with contrasting photophysiologies. Lavaud J; Six C; Campbell DA Photosynth Res; 2016 Feb; 127(2):189-99. PubMed ID: 26156125 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]