These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29059508)

  • 1. Large-Scale, Long-Range-Ordered Patterning of Nanocrystals via Capillary-Bridge Manipulation.
    Feng J; Song Q; Zhang B; Wu Y; Wang T; Jiang L
    Adv Mater; 2017 Dec; 29(46):. PubMed ID: 29059508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal Self-Assembly under Confinement: Bridging Nanomaterials to Integrated Devices.
    Feng J; Qiu Y; Gao H; Wu Y
    Acc Chem Res; 2024 Jan; 57(2):222-233. PubMed ID: 38170611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Step Patterning of Organic Semiconductors on Gold Electrodes via Capillary-Bridge Manipulation.
    Liu Y; Che P; Zhang B; Yang J; Gao H; Feng J; Wu Y; Jiang L
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32761-32770. PubMed ID: 35816371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Range-Ordered Assembly of Micro-/Nanostructures at Superwetting Interfaces.
    Feng J; Qiu Y; Jiang L; Wu Y
    Adv Mater; 2022 Mar; 34(9):e2106857. PubMed ID: 34908188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of anisotropy gold nanocubes into large area two-dimensional monolayer superlattices.
    Li J; Liu X; Jin J; Yan N; Jiang W
    Nanotechnology; 2022 Jun; 33(38):. PubMed ID: 35697002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid In Situ Ligand-Exchange Process Used to Prepare 3D PbSe Nanocrystal Superlattice Infrared Photodetectors.
    Xu X; Kweon KE; Keuleyan S; Sawvel A; Cho EJ; Orme C
    Small; 2021 Jun; 17(25):e2101166. PubMed ID: 34018675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly patterning of ultrafine zirconia nanocrystal films fabricated on chemically patterned templates.
    Ma Q; Izu N; Masuda Y
    Nanotechnology; 2018 Dec; 29(49):495702. PubMed ID: 30207291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible, Tunable, Electric-Field Driven Assembly of Silver Nanocrystal Superlattices.
    Yu Y; Yu D; Orme CA
    Nano Lett; 2017 Jun; 17(6):3862-3869. PubMed ID: 28511013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic Assembly of Nanocrystal/Molecular Hierarchical Superlattices Decoding from Tris-Amide Triarylamines Supramolecular Networks.
    Zhang F; Yang F; Gong Y; Wei Y; Yang Y; Wei J; Yang Z; Pileni MP
    Small; 2020 Dec; 16(48):e2005701. PubMed ID: 33169513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse Opal Nanocrystal Superlattice Films.
    Saunders AE; Shah PS; Sigman MB; Hanrath T; Hwang HS; Lim KT; Johnston KP; Korgel BA
    Nano Lett; 2004 Oct; 4(10):1943-1948. PubMed ID: 28937767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and Direct Liquid-Phase Synthesis of Luminescent Metal Halide Superlattices.
    Le TH; Noh S; Lee H; Lee J; Kim M; Kim C; Yoon H
    Adv Mater; 2023 Apr; 35(17):e2210749. PubMed ID: 36739656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of ordering in single-component and binary nanocrystal superlattices by analysis of their autocorrelation functions.
    Pichler S; Bodnarchuk MI; Kovalenko MV; Yarema M; Springholz G; Talapin DV; Heiss W
    ACS Nano; 2011 Mar; 5(3):1703-12. PubMed ID: 21370900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regular Aligned 1D Single-Crystalline Supramolecular Arrays for Photodetectors.
    Liu Y; Feng J; Zhang B; Wu Y; Chen Y; Jiang L
    Small; 2018 Feb; 14(5):. PubMed ID: 29251425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-dependent ordering of gold nanocrystals into large-scale superlattices.
    Gong J; Newman RS; Engel M; Zhao M; Bian F; Glotzer SC; Tang Z
    Nat Commun; 2017 Jan; 8():14038. PubMed ID: 28102198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals.
    Gu XW; Ye X; Koshy DM; Vachhani S; Hosemann P; Alivisatos AP
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2836-2841. PubMed ID: 28242704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic Cracking of Nanocrystal Superlattices.
    Diroll BT; Ma X; Wu Y; Murray CB
    Nano Lett; 2017 Oct; 17(10):6501-6506. PubMed ID: 28921994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Ordered Semiconducting Polymer Arrays for Sensitive Photodetectors.
    Wei X; Gao H; Feng J; Pi Y; Zhang B; Zhai Y; Wen W; He M; Matthews JR; Wang H; Li Y; Jiang S; Jiang L; Wu Y
    ACS Appl Mater Interfaces; 2019 May; 11(17):15829-15836. PubMed ID: 30964626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.