These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 29059795)

  • 1. Wearable health monitoring using capacitive voltage-mode Human Body Communication.
    Maity S; Das D; Sen S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1-4. PubMed ID: 29059795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating on the Interferences on Human Body Communication System Induced by Other Wearable Devices.
    Mao J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4044-4047. PubMed ID: 31946759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Analysis of AM and FM Interference Robustness of Integrating DDR Receiver for Human Body Communication.
    Maity S; Jiang X; Sen S
    IEEE Trans Biomed Circuits Syst; 2019 Jun; 13(3):566-578. PubMed ID: 30990439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network.
    Jin Y
    J Med Syst; 2019 Apr; 43(5):137. PubMed ID: 30963291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-Physical Modeling, Characterization, and Optimization of Electro-Quasistatic Human Body Communication.
    Maity S; He M; Nath M; Das D; Chatterjee B; Sen S
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1791-1802. PubMed ID: 30403618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-the-Wild Interference Characterization and Modelling for Electro-Quasistatic-HBC With Miniaturized Wearables.
    Yang D; Mehrotra P; Weigand S; Sen S
    IEEE Trans Biomed Eng; 2021 Sep; 68(9):2858-2869. PubMed ID: 34010125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Software Defined Radio Evaluation Platform for WBAN Systems.
    Wang J; Han K; Chen Z; Alexandridis A; Zilic Z; Pang Y; Lin J
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30572575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Survey on LPWAN Technologies in WBAN for Remote Health-Care Monitoring.
    Olatinwo DD; Abu-Mahfouz A; Hancke G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A statistical frame based TDMA protocol for human body communication.
    Nie Z; Li Z; Huang R; Liu Y; Li J; Wang L
    Biomed Eng Online; 2015 Jul; 14():65. PubMed ID: 26155949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable ECG Based on Impulse-Radio-Type Human Body Communication.
    Wang J; Fujiwara T; Kato T; Anzai D
    IEEE Trans Biomed Eng; 2016 Sep; 63(9):1887-1894. PubMed ID: 26642315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey on Wireless Wearable Body Area Networks: A Perspective of Technology and Economy.
    Bhatti DS; Saleem S; Imran A; Iqbal Z; Alzahrani A; Kim H; Kim KI
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Internet-of-Things (IoT) Network System for Connected Safety and Health Monitoring Applications.
    Wu F; Wu T; Yuce MR
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Investigation on Ground Electrodes of Capacitive Coupling Human Body Communication.
    Mao J; Yang H; Zhao B
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):910-919. PubMed ID: 28541910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in Wireless Sensors for Wearable Electronics.
    Park YG; Lee S; Park JU
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31600870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Self-Powered Wearable Sensor for Continuous Wireless Sweat Monitoring.
    Gai Y; Wang E; Liu M; Xie L; Bai Y; Yang Y; Xue J; Qu X; Xi Y; Li L; Luo D; Li Z
    Small Methods; 2022 Oct; 6(10):e2200653. PubMed ID: 36074976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simulation Platform to Study the Human Body Communication Channel.
    Krhac K; Sayrafian K; Noetscher G; Simunic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4040-4043. PubMed ID: 31946758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling Covert Body Area Network using Electro-Quasistatic Human Body Communication.
    Das D; Maity S; Chatterjee B; Sen S
    Sci Rep; 2019 Mar; 9(1):4160. PubMed ID: 30858385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of Wired and Wireless Interconnected Body Sensor Networks.
    Talpur A; Shaikh FK; Baloch N; Felemban E; Khelil A; Alam MM
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31454909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronics and orthopaedic surgery.
    Aldebeyan S; Aoude A; Harvey EJ
    Injury; 2018 Jun; 49 Suppl 1():S102-S104. PubMed ID: 29929684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.