These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29059848)

  • 1. Towards a wearable hand exoskeleton with embedded synergies.
    Burns MK; Van Orden K; Patel V; Vinjamuri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():213-216. PubMed ID: 29059848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies.
    Burns MK; Pei D; Vinjamuri R
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1351-1361. PubMed ID: 31670679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tracking device for a wearable high-DOF passive hand exoskeleton.
    Casas R; Martin K; Sandison M; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6643-6646. PubMed ID: 34892631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired tendon driven mechanism for simultaneous finger joints flexion using a soft hand exoskeleton.
    Abdelhafiz MH; Spaich EG; Dosen S; Lotte N S AS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1073-1078. PubMed ID: 31374772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Compact and Lightweight Rehabilitative Exoskeleton to Restore Grasping Functions for People with Hand Paralysis.
    Nazari V; Pouladian M; Zheng YP; Alam M
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injury risk of interphalangeal and metacarpophalangeal joints under impact loading.
    Carpanen D; Kedgley AE; Shah DS; Edwards DS; Plant DJ; Masouros SD
    J Mech Behav Biomed Mater; 2019 Sep; 97():306-311. PubMed ID: 31151003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of simulated proximal interphalangeal arthrodeses of all fingers on hand function.
    Woodworth JA; McCullough MB; Grosland NM; Adams BD
    J Hand Surg Am; 2006; 31(6):940-6. PubMed ID: 16843153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-varying synergies in velocity profiles of finger joints of the hand during reach and grasp.
    Vinjamuri R; Mao ZH; Sclabassi R; Sun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4846-9. PubMed ID: 18003091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
    Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J
    Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical Test of a Wearable, High DOF, Spring Powered Hand Exoskeleton (HandSOME II).
    Casas R; Sandison M; Chen T; Lum PS
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1877-1885. PubMed ID: 34478375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Variable Stiffness Compliant Finger Exoskeleton for Rehabilitation Based on Electromagnet Control.
    Liang R; Xu G; Li M; Zhang S; Luo A; Tao T
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3926-3929. PubMed ID: 30441219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic Tendon-Based Mechanism for Finger Flexion and Extension in a Soft Hand Exoskeleton: Design and Experimental Assessment.
    Abdelhafiz MH; Andreasen Struijk LNS; Dosen S; Spaich EG
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design-validation of a hand exoskeleton using musculoskeletal modeling.
    Hansen C; Gosselin F; Ben Mansour K; Devos P; Marin F
    Appl Ergon; 2018 Apr; 68():283-288. PubMed ID: 29409646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Validation of a Self-Aligning Index Finger Exoskeleton for Post-Stroke Rehabilitation.
    Sun N; Li G; Cheng L
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1513-1523. PubMed ID: 34270428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hand Kinematics Characterization While Performing Activities of Daily Living Through Kinematics Reduction.
    Jarque-Bou NJ; Vergara M; Sancho-Bru JL; Gracia-Ibanez V; Roda-Sales A
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1556-1565. PubMed ID: 32634094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable Shoulder Exoskeleton with Spring-Cam Mechanism for Customizable, Nonlinear Gravity Compensation.
    Asgari M; Hall PT; Moore BS; Crouch DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4926-4929. PubMed ID: 33019093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.