BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29060066)

  • 1. Flexible microelectrode array for retinal prosthesis.
    Bin Sun ; Tengyue Li ; Kai Xia ; Qi Zeng ; Tianzhun Wu ; Humayun MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1097-1100. PubMed ID: 29060066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation.
    Jiang X; Sui X; Lu Y; Yan Y; Zhou C; Li L; Ren Q; Chai X
    J Neuroeng Rehabil; 2013 May; 10():48. PubMed ID: 23718827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration.
    Chung WG; Jang J; Cui G; Lee S; Jeong H; Kang H; Seo H; Kim S; Kim E; Lee J; Lee SG; Byeon SH; Park JU
    Nat Nanotechnol; 2024 May; 19(5):688-697. PubMed ID: 38225357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical characteristics of microelectrode designed for electrical stimulation.
    Cui H; Xie X; Xu S; Chan LLH; Hu Y
    Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implantable nanostructured MEA with biphasic current stimulator for retinal prostheses.
    Han S; Kim C; Kim K; Lee S
    Technol Health Care; 2023; 31(5):1981-1995. PubMed ID: 36872814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 3D flexible microelectrode array for subretinal stimulation.
    Seo HW; Kim N; Ahn J; Cha S; Goo YS; Kim S
    J Neural Eng; 2019 Aug; 16(5):056016. PubMed ID: 31357188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in fabrication process of microelectrode array for a retinal prosthesis using Liquid Crystal Polymer (LCP).
    Jeong J; Shin S; Lee GJ; Gwon TM; Park JH; Kim SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5295-8. PubMed ID: 24110931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microelectrode Array With Integrated Pneumatic Channels for Dynamic Control of Electrode Position in Retinal Implants.
    Xu Y; Pang S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2292-2298. PubMed ID: 34705653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDMS based multielectrode arrays for superior in-vitro retinal stimulation and recording.
    Biswas S; Sikdar D; Das D; Mahadevappa M; Das S
    Biomed Microdevices; 2017 Aug; 19(4):75. PubMed ID: 28842772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat.
    Hesse L; Schanze T; Wilms M; Eger M
    Graefes Arch Clin Exp Ophthalmol; 2000 Oct; 238(10):840-5. PubMed ID: 11127571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved polyimide thin-film electrodes for neural implants.
    Ordonez JS; Boehler C; Schuettler M; Stieglitz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5134-7. PubMed ID: 23367084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a MEMS-based dual metal-layer thin-film microelectrode array for suprachoroidal electrical stimulation.
    Sui X; Sun J; Li L; Zhou C; Luo X; Xia N; Yan Y; Chen Y; Ren Q; Chai X
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):524-31. PubMed ID: 22510954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy.
    Hébert C; Cottance M; Degardin J; Scorsone E; Rousseau L; Lissorgues G; Bergonzo P; Picaud S
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():77-84. PubMed ID: 27612691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation.
    Rui YF; Liu JQ; Yang B; Li KY; Yang CS
    Biomed Microdevices; 2012 Apr; 14(2):367-73. PubMed ID: 22124887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording.
    Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and functional demonstration of a smart electrode with a built-in CMOS microchip for neural stimulation of a retinal prosthesis.
    Noda T; Fujisawa T; Kawasaki R; Tashiro H; Takehara H; Sasagawa K; Tokuda T; Ohta J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3355-8. PubMed ID: 26737011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 8-Channel Biphasic Current Stimulator Optimized for Retinal Prostheses.
    Lee CE; Jung Y; Song YK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4298-4302. PubMed ID: 33714317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.