These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29060066)

  • 21. 8-Channel Biphasic Current Stimulator Optimized for Retinal Prostheses.
    Lee CE; Jung Y; Song YK
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4298-4302. PubMed ID: 33714317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new chronic neural probe with electroplated iridium oxide microelectrodes.
    Han M; McCreery DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4220-1. PubMed ID: 19163643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocone-Array-Based Platinum-Iridium Oxide Neural Microelectrodes: Structure, Electrochemistry, Durability and Biocompatibility Study.
    Zeng Q; Yu S; Fan Z; Huang Y; Song B; Zhou T
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical characteristics of 2D and 3D microelectrodes for high-resolution retinal prostheses.
    Lee S; Ahn J; Yoo H; Jung S; Oh S; Park S; Cho D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3535-8. PubMed ID: 24110492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrical Stimulation of the Retina to Produce Artificial Vision.
    Weiland JD; Walston ST; Humayun MS
    Annu Rev Vis Sci; 2016 Oct; 2():273-294. PubMed ID: 28532361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Computational Study of Graphene as a Prospective Material for Microelectrodes in Retinal Prosthesis and Electric Crosstalk Analysis.
    Asghar SA; Pal P; Nazeer K; Mahadevappa M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2291-2294. PubMed ID: 33018465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of electrochemically treated bulk electrodes for a retinal prosthesis by examination of retinal intrinsic signals in cats.
    Kanda H; Mihashi T; Miyoshi T; Hirohara Y; Morimoto T; Terasawa Y; Fujikado T
    Jpn J Ophthalmol; 2014 Jul; 58(4):309-19. PubMed ID: 24788459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The application of flexible neural microelectrode on retinal prosthesis].
    Hui C; Li B; Xu A; Xing Y; Li G; Zhao J; Ren Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):938-40. PubMed ID: 18788313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity.
    Vomero M; Castagnola E; Ciarpella F; Maggiolini E; Goshi N; Zucchini E; Carli S; Fadiga L; Kassegne S; Ricci D
    Sci Rep; 2017 Jan; 7():40332. PubMed ID: 28084398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and evaluation of thin-film flexible microelectrode arrays for retinal stimulation and recording.
    Mathieson K; Moodie AR; Grant E; Morrison JD
    J Med Eng Technol; 2013 Feb; 37(2):79-85. PubMed ID: 23249248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-performance Flexible Microelectrode Array with PEDOT:PSS Coated 3D Micro-cones for Electromyographic Recording.
    Lu J; Zia M; Williams MJ; Jacob AL; Chung B; Sober SJ; Bakir MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():5111-5114. PubMed ID: 36086620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a very large array for retinal stimulation.
    Waschkowski F; Brockmann C; Laube T; Mokwa W; Roessler G; Walter P
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2748-51. PubMed ID: 24110296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The research on high-density flexible microelectrode array of retinal prosthesis based on MEMS technology].
    Feng G; Sui X; Wang Y; Li G; Chai X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Nov; 37(6):407-10. PubMed ID: 24617208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial characteristics of evoked potentials elicited by a MEMS microelectrode array for suprachoroidal-transretinal stimulation in a rabbit.
    Yan Y; Sui X; Liu W; Lu Y; Cao P; Ma Z; Chen Y; Chai X; Li L
    Graefes Arch Clin Exp Ophthalmol; 2015 Sep; 253(9):1515-28. PubMed ID: 25981117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel technique for increasing charge injection capacity of neural electrodes for efficacious and safe neural stimulation.
    Negi S; Bhandari R; Solzbacher F
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5142-5. PubMed ID: 23367086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of Subretinal 3D Microelectrodes with Hexagonal Arrangement.
    Seo HW; Kim N; Kim S
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32365472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparison of retinal prosthesis electrode array substrate materials.
    Weiland JD; Humayun MS; Eckhardt H; Ufer S; Laude L; Basinger B; Tai YC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4140-3. PubMed ID: 19963811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis.
    Hadjinicolaou AE; Leung RT; Garrett DJ; Ganesan K; Fox K; Nayagam DA; Shivdasani MN; Meffin H; Ibbotson MR; Prawer S; O'Brien BJ
    Biomaterials; 2012 Aug; 33(24):5812-20. PubMed ID: 22613134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.