These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29060266)

  • 1. Electrocortical amplitude modulations of human level-ground, slope, and stair walking.
    Trieu Phat Luu ; Brantley JA; Fangshi Zhu ; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1913-1916. PubMed ID: 29060266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocortical correlates of human level-ground, slope, and stair walking.
    Luu TP; Brantley JA; Nakagome S; Zhu F; Contreras-Vidal JL
    PLoS One; 2017; 12(11):e0188500. PubMed ID: 29190704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocortical activity is coupled to gait cycle phase during treadmill walking.
    Gwin JT; Gramann K; Makeig S; Ferris DP
    Neuroimage; 2011 Jan; 54(2):1289-96. PubMed ID: 20832484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocortical activity distinguishes between uphill and level walking in humans.
    Bradford JC; Lukos JR; Ferris DP
    J Neurophysiol; 2016 Feb; 115(2):958-66. PubMed ID: 26683062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocortical Dynamics of Usual Walking and the Planning to Step over Obstacles in Parkinson's Disease.
    Vitório R; Lirani-Silva E; Orcioli-Silva D; Beretta VS; Oliveira AS; Gobbi LTB
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restricted vision increases sensorimotor cortex involvement in human walking.
    Oliveira AS; Schlink BR; Hairston WD; König P; Ferris DP
    J Neurophysiol; 2017 Oct; 118(4):1943-1951. PubMed ID: 28679843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking reduces sensorimotor network connectivity compared to standing.
    Lau TM; Gwin JT; Ferris DP
    J Neuroeng Rehabil; 2014 Feb; 11():14. PubMed ID: 24524394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects.
    Wagner J; Solis-Escalante T; Grieshofer P; Neuper C; Müller-Putz G; Scherer R
    Neuroimage; 2012 Nov; 63(3):1203-11. PubMed ID: 22906791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticomuscular coherence variation throughout the gait cycle during overground walking and ramp ascent: A preliminary investigation.
    Winslow AT; Brantley J; Zhu F; Contreras Vidal JL; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4634-4637. PubMed ID: 28269308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating neural correlates of locomotion transition via temporal relation of EEG and EOG-recorded eye movements.
    Mehra D; Tiwari A; Joshi D
    Comput Biol Med; 2021 May; 132():104350. PubMed ID: 33799217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Faster Gait Speeds Reduce Alpha and Beta EEG Spectral Power From Human Sensorimotor Cortex.
    Nordin AD; Hairston WD; Ferris DP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):842-853. PubMed ID: 31199248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocortical activity changes in response to unpredictable trip perturbations induced by a split-belt treadmill.
    An J; Yoo D; Lee BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():110-113. PubMed ID: 31945856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human electrocortical dynamics while stepping over obstacles.
    Nordin AD; Hairston WD; Ferris DP
    Sci Rep; 2019 Mar; 9(1):4693. PubMed ID: 30886202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle.
    Seeber M; Scherer R; Wagner J; Solis-Escalante T; Müller-Putz GR
    Neuroimage; 2015 May; 112():318-326. PubMed ID: 25818687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-dependent modulation of neural oscillations across the gait cycle.
    Zhao M; Bonassi G; Samogin J; Taberna GA; Pelosin E; Nieuwboer A; Avanzino L; Mantini D
    Hum Brain Mapp; 2022 Aug; 43(11):3404-3415. PubMed ID: 35384123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile neuroimaging: What we have learned about the neural control of human walking, with an emphasis on EEG-based research.
    Richer N; Bradford JC; Ferris DP
    Neurosci Biobehav Rev; 2024 Jul; 162():105718. PubMed ID: 38744350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response.
    Sipp AR; Gwin JT; Makeig S; Ferris DP
    J Neurophysiol; 2013 Nov; 110(9):2050-60. PubMed ID: 23926037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural predictors of gait stability when walking freely in the real-world.
    Pizzamiglio S; Abdalla H; Naeem U; Turner DL
    J Neuroeng Rehabil; 2018 Feb; 15(1):11. PubMed ID: 29486775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using machine learning to reveal the population vector from EEG signals.
    Kobler RJ; Almeida I; Sburlea AI; Müller-Putz GR
    J Neural Eng; 2020 Mar; 17(2):026002. PubMed ID: 32048612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.