These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29060266)

  • 21. Electrocortical activity in freely walking rats varies with environmental conditions.
    Li B; Liu S; Hu D; Li G; Tang R; Song D; Lang Y; He J
    Brain Res; 2021 Jan; 1751():147188. PubMed ID: 33137325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visual Occlusions Result in Phase Synchrony Within Multiple Brain Regions Involved in Sensory Processing and Balance Control.
    Symeonidou ER; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3772-3780. PubMed ID: 37725737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cognitive Processing for Step Precision Increases Beta and Gamma Band Modulation During Overground Walking.
    Oliveira AS; Arguissain FG; Andersen OK
    Brain Topogr; 2018 Jul; 31(4):661-671. PubMed ID: 29429136
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking.
    Bulea TC; Kim J; Damiano DL; Stanley CJ; Park HS
    Front Hum Neurosci; 2015; 9():247. PubMed ID: 26029077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of locomotor demands on cognitive processing.
    Cortney Bradford J; Lukos JR; Passaro A; Ries A; Ferris DP
    Sci Rep; 2019 Jun; 9(1):9234. PubMed ID: 31239461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolating gait-related movement artifacts in electroencephalography during human walking.
    Kline JE; Huang HJ; Snyder KL; Ferris DP
    J Neural Eng; 2015 Aug; 12(4):046022. PubMed ID: 26083595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study.
    Malcolm BR; Foxe JJ; Butler JS; De Sanctis P
    Neuroimage; 2015 Aug; 117():230-42. PubMed ID: 25988225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EEG Dynamics of Locomotion and Balancing: Solution to Neuro-Rehabilitation.
    Khajuria A; Sharma R; Joshi D
    Clin EEG Neurosci; 2024 Jan; 55(1):143-163. PubMed ID: 36052404
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whole-body angular momentum during stair ascent and descent.
    Silverman AK; Neptune RR; Sinitski EH; Wilken JM
    Gait Posture; 2014 Apr; 39(4):1109-14. PubMed ID: 24636222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EEG beta suppression and low gamma modulation are different elements of human upright walking.
    Seeber M; Scherer R; Wagner J; Solis-Escalante T; Müller-Putz GR
    Front Hum Neurosci; 2014; 8():485. PubMed ID: 25071515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit.
    Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B
    Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance-based approach for movement artifact removal from electroencephalographic data recorded during locomotion.
    Arad E; Bartsch RP; Kantelhardt JW; Plotnik M
    PLoS One; 2018; 13(5):e0197153. PubMed ID: 29768471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gait-phase-dependent and gait-phase-independent cortical activity across multiple regions involved in voluntary gait modifications in humans.
    Yokoyama H; Kaneko N; Masugi Y; Ogawa T; Watanabe K; Nakazawa K
    Eur J Neurosci; 2021 Dec; 54(12):8092-8105. PubMed ID: 32557966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noninvasive EEG correlates of overground and stair walking.
    Brantley JA; Luu TP; Ozdemir R; Zhu F; Winslow AT; Huang H; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5729-5732. PubMed ID: 28325029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent.
    Peng J; Fey NP; Kuiken TA; Hargrove LJ
    J Biomech; 2016 Feb; 49(4):528-36. PubMed ID: 26830440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Independent Component Analysis of Gait-Related Movement Artifact Recorded using EEG Electrodes during Treadmill Walking.
    Snyder KL; Kline JE; Huang HJ; Ferris DP
    Front Hum Neurosci; 2015; 9():639. PubMed ID: 26648858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of blurred visual inputs with different levels on the cerebral activity during free level walking.
    Ao M; Ren S; Yu Y; Huang H; Miao X; Ao Y; Wang W
    Front Neurosci; 2023; 17():1151799. PubMed ID: 37139527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.
    Afzal T; White G; Wright AB; Iqbal K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4071-4. PubMed ID: 25570886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal and spatial organization of gait-related electrocortical potentials.
    Knaepen K; Mierau A; Tellez HF; Lefeber D; Meeusen R
    Neurosci Lett; 2015 Jul; 599():75-80. PubMed ID: 26003448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decoding bipedal locomotion from the rat sensorimotor cortex.
    Rigosa J; Panarese A; Dominici N; Friedli L; van den Brand R; Carpaneto J; DiGiovanna J; Courtine G; Micera S
    J Neural Eng; 2015 Oct; 12(5):056014. PubMed ID: 26331532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.