These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29060307)

  • 1. Hierarchical decoding of grasping commands from EEG.
    Omedes J; Schwarz A; Montesano L; Muller-Putz G
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2085-2088. PubMed ID: 29060307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting intention to grasp during reaching movements from EEG.
    Randazzo L; Iturrate I; Chavarriaga R; Leeb R; Del Millan JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1115-8. PubMed ID: 26736461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining frequency and time-domain EEG features for classification of self-paced reach-and-grasp actions.
    Schwarz A; Pereira J; Lindner L; Muller-Putz GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3036-3041. PubMed ID: 31946528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding Hand Movement Types and Kinematic Information From Electroencephalogram.
    Xu B; Wang Y; Deng L; Wu C; Zhang W; Li H; Song A
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1744-1755. PubMed ID: 34428142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG.
    Peterson V; Wyser D; Lambercy O; Spies R; Gassert R
    J Neural Eng; 2019 Feb; 16(1):016019. PubMed ID: 30623892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding electroencephalographic signals for direction in brain-computer interface using echo state network and Gaussian readouts.
    Kim HH; Jeong J
    Comput Biol Med; 2019 Jul; 110():254-264. PubMed ID: 31233971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding hand movements from human EEG to control a robotic arm in a simulation environment.
    Schwarz A; Höller MK; Pereira J; Ofner P; Müller-Putz GR
    J Neural Eng; 2020 May; 17(3):036010. PubMed ID: 32272464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature domain-specific movement intention detection for stroke rehabilitation with brain-computer interfaces.
    Hadsund JT; Sorensen MB; Royo AC; Niazi IK; Rovsing H; Rovsing C; Jochumsen M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5725-5728. PubMed ID: 28269555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoding natural reach-and-grasp actions from human EEG.
    Schwarz A; Ofner P; Pereira J; Sburlea AI; Müller-Putz GR
    J Neural Eng; 2018 Feb; 15(1):016005. PubMed ID: 28853420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA.
    Eilbeigi E; Setarehdan SK
    Comput Biol Med; 2018 Aug; 99():63-75. PubMed ID: 29890509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI.
    Omedes J; Schwarz A; Müller-Putz GR; Montesano L
    J Neural Eng; 2018 Aug; 15(4):046023. PubMed ID: 29714718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human EEG reveals distinct neural correlates of power and precision grasping types.
    Iturrate I; Chavarriaga R; Pereira M; Zhang H; Corbet T; Leeb R; Millán JDR
    Neuroimage; 2018 Nov; 181():635-644. PubMed ID: 30056196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuously Decoding Grasping Movements using Stereotactic Depth Electrodes.
    Ottenhoff MC; Goulis S; Wagner L; Tousseyn S; Colon A; Kubben P; Herff C
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6098-6101. PubMed ID: 34892508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Synergy-Based Hand Movements using Electroencephalography.
    Patel V; Burns M; Pei D; Vinjamuri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4816-4819. PubMed ID: 30441424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of filtering techniques to extract movement intention information from low-frequency EEG activity.
    Bibian C; Lopez-Larraz E; Irastorza-Landa N; Birbaumer N; Ramos-Murguialday A
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2960-2963. PubMed ID: 29060519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms.
    Jochumsen M; Rovsing C; Rovsing H; Niazi IK; Dremstrup K; Kamavuako EN
    Comput Intell Neurosci; 2017; 2017():7470864. PubMed ID: 28951736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation.
    Jochumsen M; Niazi IK; Dremstrup K; Kamavuako EN
    Med Biol Eng Comput; 2016 Oct; 54(10):1491-501. PubMed ID: 26639017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques.
    Úbeda A; Azorín JM; Chavarriaga R; R Millán JD
    J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.