These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29060308)

  • 1. Detection of self-paced movement intention from pre-movement electroencephalogram signals with Hilbert transform.
    Hong Zeng ; Changcheng Wu ; Aiguo Song ; Baoguo Xu ; Huijun Li ; Pengcheng Wen ; Jia Liu
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2089-2092. PubMed ID: 29060308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advantages of EEG phase patterns for the detection of gait intention in healthy and stroke subjects.
    Sburlea AI; Montesano L; Minguez J
    J Neural Eng; 2017 Jun; 14(3):036004. PubMed ID: 28291737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG Neural Correlates of Self-Paced Left- and Right-Hand Movement Intention during a Reaching Task.
    Yang L; Lu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2040-2043. PubMed ID: 30440802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding of Self-paced Lower-Limb Movement Intention: A Case Study on the Influence Factors.
    Liu D; Chen W; Chavarriaga R; Pei Z; Millán JDR
    Front Hum Neurosci; 2017; 11():560. PubMed ID: 29218004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-paced movement intention detection from human brain signals: Invasive and non-invasive EEG.
    Lew E; Chavarriaga R; Zhang H; Seeck M; Millan Jdel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3280-3. PubMed ID: 23366626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of self-paced reaching movement intention from EEG signals.
    Lew E; Chavarriaga R; Silvoni S; Millán Jdel R
    Front Neuroeng; 2012; 5():13. PubMed ID: 23055968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Features for Movement Prediction from Single-Trial Movement-Related Cortical Potentials in Healthy Subjects and Stroke Patients.
    Kamavuako EN; Jochumsen M; Niazi IK; Dremstrup K
    Comput Intell Neurosci; 2015; 2015():858015. PubMed ID: 26161089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry of cortical planning for initiating stepping in sub-acute stroke.
    Peters S; Ivanova TD; Lakhani B; Boyd LA; Staines WR; Handy TC; Garland SJ
    Clin Neurophysiol; 2018 Apr; 129(4):787-796. PubMed ID: 29453170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical Decoding Model of Upper Limb Movement Intention From EEG Signals Based on Attention State Estimation.
    Bi L; Xia S; Fei W
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2008-2016. PubMed ID: 34559657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding Movement-Related Cortical Potentials Based on Subject-Dependent and Section-Wise Spectral Filtering.
    Jeong JH; Kwak NS; Guan C; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):687-698. PubMed ID: 31944982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global optimal constrained ICA and its application in extraction of movement related cortical potentials from single-trial EEG signals.
    Eilbeigi E; Setarehdan SK
    Comput Methods Programs Biomed; 2018 Nov; 166():155-169. PubMed ID: 30415714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting the Intention to Move Upper Limbs from Electroencephalographic Brain Signals.
    Gudiño-Mendoza B; Sanchez-Ante G; Antelis JM
    Comput Math Methods Med; 2016; 2016():3195373. PubMed ID: 27217826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of reaching intention using EEG signals and nonlinear dynamic system identification.
    Mirzaee MS; Moghimi S
    Comput Methods Programs Biomed; 2019 Jul; 175():151-161. PubMed ID: 31104704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG neural correlates of goal-directed movement intention.
    Pereira J; Ofner P; Schwarz A; Sburlea AI; Müller-Putz GR
    Neuroimage; 2017 Apr; 149():129-140. PubMed ID: 28131888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single trial prediction of self-paced reaching directions from EEG signals.
    Lew EY; Chavarriaga R; Silvoni S; Millán Jdel R
    Front Neurosci; 2014; 8():222. PubMed ID: 25136290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive classification of self-paced upper-limb analytical movements with EEG.
    Ibáñez J; Serrano JI; del Castillo MD; Minguez J; Pons JL
    Med Biol Eng Comput; 2015 Nov; 53(11):1201-10. PubMed ID: 25980505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA.
    Eilbeigi E; Setarehdan SK
    Comput Biol Med; 2018 Aug; 99():63-75. PubMed ID: 29890509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of EEG spatial filters for movement related cortical potential detection.
    Karimi F; Kofman J; Mrachcz-Kersting N; Farina D; Ning Jiang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1576-1579. PubMed ID: 28268629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminative Manifold Learning Based Detection of Movement-Related Cortical Potentials.
    Lin C; Wang BH; Jiang N; Xu R; Mrachacz-Kersting N; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):921-927. PubMed ID: 26955040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.