These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29060329)

  • 41. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach.
    Wang TH; Du P; Angeli TR; Paskaranandavadivel N; Erickson JC; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2018 Jan; 30(1):. PubMed ID: 28695661
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Miniaturized wireless gastric pacing via inductive power transfer with non-invasive monitoring using cutaneous Electrogastrography.
    Perley A; Roustaei M; Aguilar-Rivera M; Kunkel DC; Hsiai TK; Coleman TP; Abiri P
    Bioelectron Med; 2021 Aug; 7(1):12. PubMed ID: 34425917
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feasibility of High-Resolution Electrical Mapping for Characterizing Conduction Blocks Created by Gastric Ablation.
    Aghababaie Z; Chan CA; Paskaranandavadivel N; Beyder A; Farrugia G; Asirvatham S; O'Grady G; Cheng LK; Angeli TR
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():170-173. PubMed ID: 31945871
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial response of jejunal pacing defined by a novel high-resolution multielectrode array.
    Nagahawatte ND; Avci R; Paskaranandavadivel N; Angeli-Gordon TR; Cheng LK
    Am J Physiol Gastrointest Liver Physiol; 2023 May; 324(5):G329-G340. PubMed ID: 36809176
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-channel wireless mapping of gastrointestinal serosal slow wave propagation.
    Paskaranandavadivel N; Wang R; Sathar S; O'Grady G; Cheng LK; Farajidavar A
    Neurogastroenterol Motil; 2015 Apr; 27(4):580-5. PubMed ID: 25599978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of gastric electrical stimulation on canine gastric slow waves.
    Xing J; Brody F; Rosen M; Chen JD; Soffer E
    Am J Physiol Gastrointest Liver Physiol; 2003 Jun; 284(6):G956-62. PubMed ID: 12584109
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human gastric myoelectric activity and gastric emptying following gastric surgery and with pacing.
    Hocking MP; Vogel SB; Sninsky CA
    Gastroenterology; 1992 Dec; 103(6):1811-6. PubMed ID: 1451975
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Normalization of atropine-induced postprandial dysrhythmias with gastric pacing.
    Qian L; Lin X; Chen JD
    Am J Physiol; 1999 Feb; 276(2):G387-92. PubMed ID: 9950812
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Entrainment of segmental small intestinal slow waves with electrical stimulation in dogs.
    Lin X; Peters LJ; Hayes J; Chen JD
    Dig Dis Sci; 2000 Apr; 45(4):652-6. PubMed ID: 10759229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Entrainment of intestinal slow waves with electrical stimulation using intraluminal electrodes.
    Lin X; Hayes J; Peters LJ; Chen JD
    Ann Biomed Eng; 2000 May; 28(5):582-7. PubMed ID: 10925956
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The "electrical way" to cure gastroparesis.
    Bortolotti M
    Am J Gastroenterol; 2002 Aug; 97(8):1874-83. PubMed ID: 12190149
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The treatment of gastroparesis in the age of the gastric pacemaker: a review.
    Buckles DC; Forster J; McCallum RW
    MedGenMed; 2003 Oct; 5(4):5. PubMed ID: 14745352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity.
    Carson DA; O'Grady G; Du P; Gharibans AA; Andrews CN
    Neurogastroenterol Motil; 2021 Mar; 33(3):e14048. PubMed ID: 33274564
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robust Methods to Detect Abnormal Initiation in the Gastric Slow Wave from Cutaneous Recordings.
    Agrusa AS; Allegra AB; Kunkel DC; Coleman TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():225-231. PubMed ID: 33017970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-resolution in vivo monophasic gastric slow waves to quantify activation and recovery profiles.
    Han H; Cheng LK; Paskaranandavadivel N
    Neurogastroenterol Motil; 2022 Dec; 34(12):e14422. PubMed ID: 35726361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel approach for model-based design of gastric pacemakers.
    Wang L; Malik A; Roop PS; Cheng LK; Paskaranandavadivel N; Ai W
    Comput Biol Med; 2020 Jan; 116():103576. PubMed ID: 31999552
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation and propagation of gastric slow waves.
    van Helden DF; Laver DR; Holdsworth J; Imtiaz MS
    Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic review of small intestine pacing parameters for modulation of gut function.
    Nagahawatte ND; Cheng LK; Avci R; Angeli-Gordon TR; Paskaranandavadivel N
    Neurogastroenterol Motil; 2023 Jan; 35(1):e14473. PubMed ID: 36194179
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A multiscale model of the electrophysiological basis of the human electrogastrogram.
    Du P; O'Grady G; Cheng LK; Pullan AJ
    Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: Feasibility and initial results.
    Angeli TR; O'Grady G; Vather R; Bissett IP; Cheng LK
    Neurogastroenterol Motil; 2018 Jul; 30(7):e13310. PubMed ID: 29493080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.