These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29060346)

  • 1. Coherence analysis of invasive blood pressure and its noninvasive indicators for improvement of cuffless measurement accuracy.
    Xiao-Rong Ding ; Yan BP; Yuan-Ting Zhang ; Jing Liu ; Peng Su ; Ni Zhao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2255-2258. PubMed ID: 29060346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoplethysmogram intensity ratio: A potential indicator for improving the accuracy of PTT-based cuffless blood pressure estimation.
    Ding XR; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():398-401. PubMed ID: 26736283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Gholamhosseini H; Baig M; Rastegar S; Lindén M
    Stud Health Technol Inform; 2018; 249():77-83. PubMed ID: 29866960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
    Ding XR; Zhang YT; Liu J; Dai WX; Tsang HK
    IEEE Trans Biomed Eng; 2016 May; 63(5):964-972. PubMed ID: 26415147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulse Transit Time Based Continuous Cuffless Blood Pressure Estimation: A New Extension and A Comprehensive Evaluation.
    Ding X; Yan BP; Zhang YT; Liu J; Zhao N; Tsang HK
    Sci Rep; 2017 Sep; 7(1):11554. PubMed ID: 28912525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis for the Influence of ABR Sensitivity on PTT-Based Cuff-Less Blood Pressure Estimation before and after Exercise.
    Xu Y; Ping P; Wang D; Zhang W
    J Healthc Eng; 2018; 2018():5396030. PubMed ID: 30402213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary study on multi-wavelength PPG based pulse transit time detection for cuffless blood pressure measurement.
    Jing Liu ; Yuan-Ting Zhang ; Xiao-Rong Ding ; Wen-Xuan Dai ; Ni Zhao
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():615-618. PubMed ID: 28324936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse transit time based respiratory rate estimation with singular spectrum analysis.
    Ding X; Yan BP; Karlen W; Zhang YT; Tsang HK
    Med Biol Eng Comput; 2020 Feb; 58(2):257-266. PubMed ID: 31834610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Tracking of Changes in Systolic Blood Pressure using BCG and ECG.
    He S; Dajani HR; Meade RD; Kenny GP; Bolic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6826-6829. PubMed ID: 31947408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive cuffless blood pressure estimation using pulse transit time, Womersley number, and photoplethysmogram intensity ratio.
    Thambiraj G; Gandhi U; Devanand V; Mangalanathan U
    Physiol Meas; 2019 Jul; 40(7):075001. PubMed ID: 31051486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous non-invasive determination of nocturnal blood pressure variation using photoplethysmographic pulse wave signals: comparison of pulse propagation time, pulse transit time and RR-interval.
    Fischer C; Penzel T
    Physiol Meas; 2019 Jan; 40(1):014001. PubMed ID: 30523856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous cuffless and non-invasive measurement of arterial blood pressure-concepts and future perspectives.
    Pilz N; Patzak A; Bothe TL
    Blood Press; 2022 Dec; 31(1):254-269. PubMed ID: 36184775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 15. Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography.
    Huynh TH; Jafari R; Chung WY
    IEEE Trans Biomed Eng; 2019 Apr; 66(4):967-976. PubMed ID: 30130167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel dynamical approach in continuous cuffless blood pressure estimation based on ECG and PPG signals.
    Sharifi I; Goudarzi S; Khodabakhshi MB
    Artif Intell Med; 2019 Jun; 97():143-151. PubMed ID: 30587391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy.
    Lin WH; Wang H; Samuel OW; Liu G; Huang Z; Li G
    Physiol Meas; 2018 Feb; 39(2):025005. PubMed ID: 29319536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCA-Based Multi-Wavelength Photoplethysmography Algorithm for Cuffless Blood Pressure Measurement on Elderly Subjects.
    Liu J; Qiu S; Luo N; Lau SK; Yu H; Kwok T; Zhang YT; Zhao N
    IEEE J Biomed Health Inform; 2021 Mar; 25(3):663-673. PubMed ID: 32750946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive Cuffless Blood Pressure Estimation With Dendritic Neural Regression.
    Ji J; Dong M; Lin Q; Tan KC
    IEEE Trans Cybern; 2023 Jul; 53(7):4162-4174. PubMed ID: 35113792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cuffless blood pressure estimation using only a smartphone.
    Matsumura K; Rolfe P; Toda S; Yamakoshi T
    Sci Rep; 2018 May; 8(1):7298. PubMed ID: 29740088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.