These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29060405)

  • 1. EEG-based emergency braking intention prediction for brain-controlled driving considering one electrode falling-off.
    Huikang Wang ; Luzheng Bi ; Teng Teng
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2494-2497. PubMed ID: 29060405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Driver Braking Intention Using EEG Signals During Simulated Driving.
    Nguyen TH; Chung WY
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Method of Emergency Situation Detection for a Brain-Controlled Vehicle by Combining EEG Signals With Surrounding Information.
    Bi L; Wang H; Teng T; Guan C
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1926-1934. PubMed ID: 30188835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of braking intention in diverse situations during simulated driving based on EEG feature combination.
    Kim IH; Kim JW; Haufe S; Lee SW
    J Neural Eng; 2015 Feb; 12(1):016001. PubMed ID: 25426805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-based emergency braking intention detection during simulated driving.
    Liang X; Yu Y; Liu Y; Liu K; Liu Y; Zhou Z
    Biomed Eng Online; 2023 Jul; 22(1):65. PubMed ID: 37393355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action prediction based on anticipatory brain potentials during simulated driving.
    Khaliliardali Z; Chavarriaga R; Gheorghe LA; Millán Jdel R
    J Neural Eng; 2015 Dec; 12(6):066006. PubMed ID: 26401885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG-Based Detection of Braking Intention Under Different Car Driving Conditions.
    Hernández LG; Mozos OM; Ferrández JM; Antelis JM
    Front Neuroinform; 2018; 12():29. PubMed ID: 29910722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG potentials predict upcoming emergency brakings during simulated driving.
    Haufe S; Treder MS; Gugler MF; Sagebaum M; Curio G; Blankertz B
    J Neural Eng; 2011 Oct; 8(5):056001. PubMed ID: 21799241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driving behavior recognition using EEG data from a simulated car-following experiment.
    Yang L; Ma R; Zhang HM; Guan W; Jiang S
    Accid Anal Prev; 2018 Jul; 116():30-40. PubMed ID: 29174606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring driver's turning direction through detection of error related brain activity.
    Zhang H; Chavarriaga R; Gheorghe L; Millán Jdel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2196-9. PubMed ID: 24110158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiology-based detection of emergency braking intention in real-world driving.
    Haufe S; Kim JW; Kim IH; Sonnleitner A; Schrauf M; Curio G; Blankertz B
    J Neural Eng; 2014 Oct; 11(5):056011. PubMed ID: 25111850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of anticipatory brain potentials during car driving.
    Khaliliardali Z; Chavarriaga R; Andrei Gheorghe L; Millán Jdel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3829-32. PubMed ID: 23366763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time EEG-based detection of fatigue driving danger for accident prediction.
    Wang H; Zhang C; Shi T; Wang F; Ma S
    Int J Neural Syst; 2015 Mar; 25(2):1550002. PubMed ID: 25541095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroencephalographic time-frequency patterns of braking and acceleration movement preparation in car driving simulation.
    Vecchiato G; Vecchio MD; Ascari L; Antopolskiy S; Deon F; Kubin L; Ambeck-Madsen J; Rizzolatti G; Avanzini P
    Brain Res; 2019 Aug; 1716():16-26. PubMed ID: 30195855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-based decoding of error-related brain activity in a real-world driving task.
    Zhang H; Chavarriaga R; Khaliliardali Z; Gheorghe L; Iturrate I; Millán Jd
    J Neural Eng; 2015 Dec; 12(6):066028. PubMed ID: 26595103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergency Braking Intention Detect System Based on K-Order Propagation Number Algorithm: A Network Perspective.
    Zhang Y; Liao Y; Zhang Y; Huang L
    Brain Sci; 2021 Oct; 11(11):. PubMed ID: 34827420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research on a successively increasing feature selection algorithm of EEG signal for driving fatigue based on SVM].
    Xie H; Yang S; Xia B; Yang W; Zhou N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Dec; 30(6):1321-5. PubMed ID: 24645619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the fatigue affecting electroencephalography based functional brain networks during real driving in young males.
    Chen J; Wang H; Wang Q; Hua C
    Neuropsychologia; 2019 Jun; 129():200-211. PubMed ID: 30995455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of driver fatigue on two channels of EEG data.
    Li W; He QC; Fan XM; Fei ZM
    Neurosci Lett; 2012 Jan; 506(2):235-9. PubMed ID: 22116020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG.
    Peterson V; Wyser D; Lambercy O; Spies R; Gassert R
    J Neural Eng; 2019 Feb; 16(1):016019. PubMed ID: 30623892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.