These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 29060471)
1. Kernel-based adaptive learning improves accuracy of glucose predictive modelling in type 1 diabetes: A proof-of-concept study. Georga EI; Principe JC; Rizos EC; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2765-2768. PubMed ID: 29060471 [TBL] [Abstract][Full Text] [Related]
2. Short-term prediction of glucose in type 1 diabetes using kernel adaptive filters. Georga EI; Príncipe JC; Fotiadis DI Med Biol Eng Comput; 2019 Jan; 57(1):27-46. PubMed ID: 29967934 [TBL] [Abstract][Full Text] [Related]
3. Non-linear dynamic modeling of glucose in type 1 diabetes with kernel adaptive filters. Georga EI; Principe JC; Polyzos D; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5897-5900. PubMed ID: 28269596 [TBL] [Abstract][Full Text] [Related]
5. Sparse Sliding-Window Kernel Recursive Least-Squares Channel Prediction for Fast Time-Varying MIMO Systems. Ai X; Zhao J; Zhang H; Sun Y Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36016009 [TBL] [Abstract][Full Text] [Related]
6. KRLS post-distorter with adaptive kernel width for visible light communications. Wang J; Wang X; Shen BZ Opt Express; 2023 Sep; 31(19):30961-30973. PubMed ID: 37710627 [TBL] [Abstract][Full Text] [Related]
7. How to apply the novel dynamic ARDL simulations (dynardl) and Kernel-based regularized least squares (krls). Sarkodie SA; Owusu PA MethodsX; 2020; 7():101160. PubMed ID: 33304836 [TBL] [Abstract][Full Text] [Related]
8. Kernel Risk-Sensitive Mean Zhang T; Wang S; Zhang H; Xiong K; Wang L Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267302 [TBL] [Abstract][Full Text] [Related]
9. Kernel least-squares models using updates of the pseudoinverse. Andelić E; Schafföner M; Katz M; Krüger SE; Wendemuth A Neural Comput; 2006 Dec; 18(12):2928-35. PubMed ID: 17052152 [TBL] [Abstract][Full Text] [Related]
10. Online Glucose Prediction Using Computationally Efficient Sparse Kernel Filtering Algorithms in Type-1 Diabetes. Yu X; Rashid M; Feng J; Hobbs N; Hajizadeh I; Samadi S; Sevil M; Lazaro C; Maloney Z; Littlejohn E; Quinn L; Cinar A IEEE Trans Control Syst Technol; 2020 Jan; 28(1):3-15. PubMed ID: 32699492 [TBL] [Abstract][Full Text] [Related]
11. Kernel-based least squares policy iteration for reinforcement learning. Xu X; Hu D; Lu X IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655 [TBL] [Abstract][Full Text] [Related]
12. Mixed-Precision Kernel Recursive Least Squares. Lee J; Nikolopoulos DS; Vandierendonck H IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1284-1298. PubMed ID: 33326387 [TBL] [Abstract][Full Text] [Related]
13. Kernel Mixture Correntropy Conjugate Gradient Algorithm for Time Series Prediction. Xue N; Luo X; Gao Y; Wang W; Wang L; Huang C; Zhao W Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267498 [TBL] [Abstract][Full Text] [Related]
14. An information theoretic approach of designing sparse kernel adaptive filters. Liu W; Park I; Principe JC IEEE Trans Neural Netw; 2009 Dec; 20(12):1950-61. PubMed ID: 19923047 [TBL] [Abstract][Full Text] [Related]
15. Multivariate Chaotic Time Series Online Prediction Based on Improved Kernel Recursive Least Squares Algorithm. Han M; Zhang S; Xu M; Qiu T; Wang N IEEE Trans Cybern; 2019 Apr; 49(4):1160-1172. PubMed ID: 29994647 [TBL] [Abstract][Full Text] [Related]
16. Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction. Xu X; Ren W ISA Trans; 2022 Jul; 126():370-376. PubMed ID: 34426005 [TBL] [Abstract][Full Text] [Related]
17. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
18. Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework. Li L; Park IM; Brockmeier A; Chen B; Seth S; Francis JT; Sanchez JC; Príncipe JC IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):532-43. PubMed ID: 22868633 [TBL] [Abstract][Full Text] [Related]
19. Gait Phase Classification and Assist Torque Prediction for a Lower Limb Exoskeleton System Using Kernel Recursive Least-Squares Method. Ma Y; Wu X; Wang C; Yi Z; Liang G Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835626 [TBL] [Abstract][Full Text] [Related]
20. A land use regression model for ambient ultrafine particles in Montreal, Canada: A comparison of linear regression and a machine learning approach. Weichenthal S; Ryswyk KV; Goldstein A; Bagg S; Shekkarizfard M; Hatzopoulou M Environ Res; 2016 Apr; 146():65-72. PubMed ID: 26720396 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]