These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29060505)

  • 41. Road safety: The influence of vibration frequency on driver drowsiness, reaction time, and driving performance.
    Zhang N; Fard M; Xu J; Davy JL; Robinson SR
    Appl Ergon; 2024 Jan; 114():104148. PubMed ID: 37813019
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel convolutional neural network method for subject-independent driver drowsiness detection based on single-channel data and EEG alpha spindles.
    Houshmand S; Kazemi R; Salmanzadeh H
    Proc Inst Mech Eng H; 2021 Sep; 235(9):1069-1078. PubMed ID: 34028321
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Review of driver fatigue/drowsiness detection methods].
    Wang L; Wu X; Yu M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):245-8. PubMed ID: 17333932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heart Rate Variability-Based Driver Drowsiness Detection and Its Validation With EEG.
    Fujiwara K; Abe E; Kamata K; Nakayama C; Suzuki Y; Yamakawa T; Hiraoka T; Kano M; Sumi Y; Masuda F; Matsuo M; Kadotani H
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1769-1778. PubMed ID: 30403616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Drowsiness detection using portable wireless EEG.
    Gangadharan K S; Vinod AP
    Comput Methods Programs Biomed; 2022 Feb; 214():106535. PubMed ID: 34861615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An on-road study of sleepiness in split shifts among city bus drivers.
    Anund A; Fors C; Ihlström J; Kecklund G
    Accid Anal Prev; 2018 May; 114():71-76. PubMed ID: 28506403
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals.
    Lee BG; Lee BL; Chung WY
    Sensors (Basel); 2014 Sep; 14(10):17915-36. PubMed ID: 25264954
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subjective sleepiness and accident risk avoiding the ecological fallacy.
    Ingre M; Akerstedt T; Peters B; Anund A; Kecklund G; Pickles A
    J Sleep Res; 2006 Jun; 15(2):142-8. PubMed ID: 16704568
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An algorithm for automatic detection of drowsiness for use in wearable EEG systems.
    Patrick KC; Imtiaz SA; Bowyer S; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3523-3526. PubMed ID: 28269058
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents.
    Papadelis C; Chen Z; Kourtidou-Papadeli C; Bamidis PD; Chouvarda I; Bekiaris E; Maglaveras N
    Clin Neurophysiol; 2007 Sep; 118(9):1906-22. PubMed ID: 17652020
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Drowsiness Detection System Based on PERCLOS and Facial Physiological Signal.
    Chang RC; Wang CY; Chen WT; Chiu CD
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simulator performance, microsleep episodes, and subjective sleepiness: normative data using convergent methodologies to assess driver drowsiness.
    Moller HJ; Kayumov L; Bulmash EL; Nhan J; Shapiro CM
    J Psychosom Res; 2006 Sep; 61(3):335-42. PubMed ID: 16938511
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of a combined EEG/NIRS system to predict driver drowsiness.
    Nguyen T; Ahn S; Jang H; Jun SC; Kim JG
    Sci Rep; 2017 Mar; 7():43933. PubMed ID: 28266633
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The utility of automated measures of ocular metrics for detecting driver drowsiness during extended wakefulness.
    Jackson ML; Kennedy GA; Clarke C; Gullo M; Swann P; Downey LA; Hayley AC; Pierce RJ; Howard ME
    Accid Anal Prev; 2016 Feb; 87():127-33. PubMed ID: 26687538
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Steering in a random forest: ensemble learning for detecting drowsiness-related lane departures.
    McDonald AD; Lee JD; Schwarz C; Brown TL
    Hum Factors; 2014 Aug; 56(5):986-98. PubMed ID: 25141601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluating driver drowsiness countermeasures.
    Gaspar JG; Brown TL; Schwarz CW; Lee JD; Kang J; Higgins JS
    Traffic Inj Prev; 2017 May; 18(sup1):S58-S63. PubMed ID: 28323444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Indicators of sleepiness in an ambulatory EEG study of night driving.
    Papadelis C; Kourtidou-Papadeli C; Bamidis PD; Chouvarda I; Koufogiannis D; Bekiaris E; Maglaveras N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6201-4. PubMed ID: 17946748
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real driving at night--predicting lane departures from physiological and subjective sleepiness.
    Hallvig D; Anund A; Fors C; Kecklund G; Åkerstedt T
    Biol Psychol; 2014 Sep; 101():18-23. PubMed ID: 25010991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting drowsy driving in real-time situations: Using an advanced driving simulator, accelerated failure time model, and virtual location-based services.
    Wang J; Sun S; Fang S; Fu T; Stipancic J
    Accid Anal Prev; 2017 Feb; 99(Pt A):321-329. PubMed ID: 28038346
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Driving drowsiness detection using spectral signatures of EEG-based neurophysiology.
    Arif S; Munawar S; Ali H
    Front Physiol; 2023; 14():1153268. PubMed ID: 37064914
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.