These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29060603)

  • 1. Measurement of heartbeat intervals in a sitting position using multiple piezoelectric sensors with body movement reduction.
    Igasaki T; Shimai S; Kobayashi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3301-3304. PubMed ID: 29060603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental study of measurement of cardiorespiratory signals in a sitting position using piezoelectric sensors.
    Igasaki T; Yoshikawa K; Murayama N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3841-4. PubMed ID: 24110569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unconstrained Monitoring Method for Heartbeat Signals Measurement using Pressure Sensors Array.
    Jiang Y; Deng S; Sun H; Qi Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel heart rate variability index for wrist-worn wearable devices subject to motion artifacts that complicate measurement of the continuous pulse interval.
    Baek HJ; Cho J
    Physiol Meas; 2019 Nov; 40(10):105010. PubMed ID: 31593935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vision-Based Measurement of Heart Rate from Ballistocardiographic Head Movements Using Unsupervised Clustering.
    Lee H; Cho A; Lee S; Whang M
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31344939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A system for monitoring heart pulse, respiration and posture in bed.
    Miyamoto Y; Yonezawa Y; Maki H; Ogawa H; Hahn AW; Caldwell WM
    Biomed Sci Instrum; 2002; 38():135-8. PubMed ID: 12085590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Noise Photoplethysmography Sensor Using Correlated Double Sampling for Heartbeat Interval Acquisition.
    Watanabe K; Izumi S; Sasai K; Yano Y; Kawaguchi H; Yoshimoto M
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1552-1562. PubMed ID: 31796415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust driver heartbeat estimation: A q-Hurst exponent based automatic sensor change with interactive multi-model EKF.
    Vrazic S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2762-6. PubMed ID: 26736864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient cloth with motion recognition sensors based on flexible piezoelectric materials.
    Youngsu Cha ; Kihyuk Nam ; Doik Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2410-2413. PubMed ID: 29060384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artifact Noise Removal Techniques on Seismocardiogram Using Two Tri-Axial Accelerometers.
    Luu L; Dinh A
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel machine learning-enabled framework for instantaneous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals.
    Zhang Q; Zhou D; Zeng X
    Physiol Meas; 2016 Nov; 37(11):1945-1967. PubMed ID: 27681602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Quadratic Nonlinearity between Motion Artifact and Acceleration Data and its Application to Heartbeat Rate Estimation.
    Kim S; Im S; Park T
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28805751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A body-fixed-sensor-based analysis of power during sit-to-stand movements.
    Zijlstra W; Bisseling RW; Schlumbohm S; Baldus H
    Gait Posture; 2010 Feb; 31(2):272-8. PubMed ID: 19963386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of Motion Artifacts and Improvement of R Peak Detecting Accuracy Using Adjacent Non-Intrusive ECG Sensors.
    Choi M; Jeong JJ; Kim SH; Kim SW
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27196910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Difference of body movements accompanying mandibular movements in standing and sitting positions].
    Takeuchi S; Kohno S; Kobayashi H; Sakurai N; Hosogai A; Kinjoh A; Kai A
    Nihon Hotetsu Shika Gakkai Zasshi; 2008 Oct; 52(4):473-81. PubMed ID: 19037142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial neural network-based classification of body movements in ambulatory ECG signal.
    Darji ST; Kher RK
    J Med Eng Technol; 2013 Nov; 37(8):535-40. PubMed ID: 24131270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Sitting Posture Monitoring Instrument to Assess Different Levels of Cognitive Engagement.
    Bibbo D; Carli M; Conforto S; Battisti F
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Sleep Biosignals Using an Intelligent Mattress Based on Piezoelectric Ceramic Sensors.
    Peng M; Ding Z; Wang L; Cheng X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31492027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensorless cardiac phase detection for synchronized control of ventricular assist devices using nonlinear kernel regression model.
    Hirohashi Y; Tanaka A; Yoshizawa M; Sugita N; Abe M; Kato T; Shiraishi Y; Miura H; Yambe T
    J Artif Organs; 2016 Jun; 19(2):114-20. PubMed ID: 26758256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early detection of sit-to-stand transitions in a lower limb orthosis.
    Bell J; Xiangrong Shen ; Sazonov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5028-31. PubMed ID: 26737421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.