These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29060612)

  • 1. Nonmotor regions encode path-related information during movements.
    Breault MS; Sacre P; Johnson JJ; Kerr M; Johnson MD; Bulacio J; Gonzalez-Martinez J; Sarma SV; Gale JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3339-3342. PubMed ID: 29060612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of nonmotor brain regions during human motor control.
    Johnson JJ; Breault MS; Sacre P; Kerr MSD; Johnson M; Bulacio J; Gonzalez-Martinez J; Sarma SV; Gale JT
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2498-2501. PubMed ID: 29060406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural Activity from Attention Networks Predicts Movement Errors.
    Breault MS; Gonzalez-Martinez JA; Gale JT; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2149-2152. PubMed ID: 31946326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-motor Brain Regions in Non-dominant Hemisphere Are Influential in Decoding Movement Speed.
    Breault MS; Fitzgerald ZB; Sacré P; Gale JT; Sarma SV; González-Martínez JA
    Front Neurosci; 2019; 13():715. PubMed ID: 31379476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural Correlates of Internal States that Capture Movement Variability.
    Breault MS; Gonzalez-Martinez JA; Gale JT; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():534-537. PubMed ID: 31945955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoelectroencephalography for continuous two-dimensional cursor control in a brain-machine interface.
    Vadera S; Marathe AR; Gonzalez-Martinez J; Taylor DM
    Neurosurg Focus; 2013 Jun; 34(6):E3. PubMed ID: 23724837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements.
    Donoghue JP; Sanes JN; Hatsopoulos NG; Gaál G
    J Neurophysiol; 1998 Jan; 79(1):159-73. PubMed ID: 9425187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High frequency activity correlates of robust movement in humans.
    Kerr MS; Kahn K; Hyun-Joo Park ; Thompson S; Hao S; Bulacio J; Gonzalez-Martinez JA; Gale J; Sarma SV
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4391-4. PubMed ID: 25570965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes of brain structural network properties in patients with rapid eye movement sleep behavior disorder].
    Zhang R; Li Z; Bai Y; Xu P; Zhang J; Zhang H
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Jan; 40(1):125-130. PubMed ID: 32376561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Globus pallidus internus oscillatory activity is related to movement speed.
    Singh A; Bötzel K
    Eur J Neurosci; 2013 Dec; 38(11):3644-9. PubMed ID: 24112279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics.
    Perel S; Sadtler PT; Oby ER; Ryu SI; Tyler-Kabara EC; Batista AP; Chase SM
    J Neurophysiol; 2015 Sep; 114(3):1500-12. PubMed ID: 26133797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracerebral recording of potentials accompanying simple limb movements: a SEEG study in epileptic patients.
    Rektor I; Louvel J; Lamarche M
    Electroencephalogr Clin Neurophysiol; 1998 Oct; 107(4):277-86. PubMed ID: 9872445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal alignment of electrocorticographic recordings for upper limb movement.
    Talakoub O; Popovic MR; Navaro J; Hamani C; Fonoff ET; Wong W
    Front Neurosci; 2014; 8():431. PubMed ID: 25628522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement-related potentials in the basal ganglia: a SEEG readiness potential study.
    Rektor I; Bares M; Kubová D
    Clin Neurophysiol; 2001 Nov; 112(11):2146-53. PubMed ID: 11682354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hand and joint paths during reaching movements with and without vision.
    Sergio LE; Scott SH
    Exp Brain Res; 1998 Sep; 122(2):157-64. PubMed ID: 9776514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
    Sauvage C; Jissendi P; Seignan S; Manto M; Habas C
    J Neuroradiol; 2013 Oct; 40(4):267-80. PubMed ID: 23433722
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.