These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29060638)

  • 1. Fall detection using smart floor sensor and supervised learning.
    Minvielle L; Atiq M; Serra R; Mougeot M; Vayatis N
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3445-3448. PubMed ID: 29060638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can we make a carpet smart enough to detect falls?
    Muheidat F; Tyrer HW
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5356-5359. PubMed ID: 28269470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fall Detection for the Elderly Based on 3-Axis Accelerometer and Depth Sensor Fusion with Random Forest Classifier.
    Kim K; Yun G; Park SK; Kim DH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4611-4614. PubMed ID: 31946891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of falls among the elderly by a floor sensor using the electric near field.
    Rimminen H; Lindström J; Linnavuo M; Sepponen R
    IEEE Trans Inf Technol Biomed; 2010 Nov; 14(6):1475-6. PubMed ID: 20525533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fall risk probability estimation based on supervised feature learning using public fall datasets.
    Koshmak GA; Linden M; Loutfi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():752-755. PubMed ID: 28268437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using supervised learning machine algorithm to identify future fallers based on gait patterns: A two-year longitudinal study.
    Gillain S; Boutaayamou M; Schwartz C; Brüls O; Bruyère O; Croisier JL; Salmon E; Reginster JY; Garraux G; Petermans J
    Exp Gerontol; 2019 Nov; 127():110730. PubMed ID: 31520696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls.
    Palmerini L; Klenk J; Becker C; Chiari L
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of accuracy of SVM-based fall detection system using real-world fall and non-fall datasets.
    Aziz O; Klenk J; Schwickert L; Chiari L; Becker C; Park EJ; Mori G; Robinovitch SN
    PLoS One; 2017; 12(7):e0180318. PubMed ID: 28678808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach.
    Bourke AK; Klenk J; Schwickert L; Aminian K; Ihlen EA; Mellone S; Helbostad JL; Chiari L; Becker C
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3712-3715. PubMed ID: 28269098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Software simulation of unobtrusive falls detection at night-time using passive infrared and pressure mat sensors.
    Ariani A; Redmond SJ; Chang D; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2115-8. PubMed ID: 21096573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting falls as novelties in acceleration patterns acquired with smartphones.
    Medrano C; Igual R; Plaza I; Castro M
    PLoS One; 2014; 9(4):e94811. PubMed ID: 24736626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An elderly fall detection using a wrist-worn accelerometer and barometer.
    Jatesiktat P; Wei Tech Ang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():125-130. PubMed ID: 29059826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hidden Markov Model-Based Fall Detection With Motion Sensor Orientation Calibration: A Case for Real-Life Home Monitoring.
    Yu S; Chen H; Brown RA
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1847-1853. PubMed ID: 29990227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining novelty detectors to improve accelerometer-based fall detection.
    Medrano C; Igual R; García-Magariño I; Plaza I; Azuara G
    Med Biol Eng Comput; 2017 Oct; 55(10):1849-1858. PubMed ID: 28251444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
    Wang C; Redmond SJ; Lu W; Stevens MC; Lord SR; Lovell NH
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2729-2736. PubMed ID: 28212076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unobtrusive monitoring and identification of fall accidents.
    van de Ven P; O'Brien H; Nelson J; Clifford A
    Med Eng Phys; 2015 May; 37(5):499-504. PubMed ID: 25769224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Home Camera-Based Fall Detection System for the Elderly.
    de Miguel K; Brunete A; Hernando M; Gambao E
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor.
    Ejupi A; Galang C; Aziz O; Park EJ; Robinovitch S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2150-2153. PubMed ID: 29060322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of Using Floor Vibration to Detect Human Falls.
    Shao Y; Wang X; Song W; Ilyas S; Guo H; Chang WS
    Int J Environ Res Public Health; 2020 Dec; 18(1):. PubMed ID: 33383939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine Learning Multi-Class Approach for Fall Detection Systems Based on Wearable Sensors with a Study on Sampling Rates Selection.
    Zurbuchen N; Wilde A; Bruegger P
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33573347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.