These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29060668)

  • 21. Changes in windlass effect in response to different shoe and insole designs during walking.
    Lin SC; Chen CP; Tang SF; Wong AM; Hsieh JH; Chen WP
    Gait Posture; 2013 Feb; 37(2):235-41. PubMed ID: 22884544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantifying stair gait stability in young and older adults, with modifications to insole hardness.
    Antonio PJ; Perry SD
    Gait Posture; 2014 Jul; 40(3):429-34. PubMed ID: 24954148
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Review in Detection and Monitoring Gait Disorders Using In-Shoe Plantar Measurement Systems.
    Ramirez-Bautista JA; Huerta-Ruelas JA; Chaparro-Cardenas SL; Hernandez-Zavala A
    IEEE Rev Biomed Eng; 2017; 10():299-309. PubMed ID: 28866600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy and effectiveness of a balance-enhancing insole.
    Perry SD; Radtke A; McIlroy WE; Fernie GR; Maki BE
    J Gerontol A Biol Sci Med Sci; 2008 Jun; 63(6):595-602. PubMed ID: 18559634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biomechanical effects of rocker shoes on plantar aponeurosis strain in patients with plantar fasciitis and healthy controls.
    Greve C; Schuitema D; Otten B; van Kouwenhove L; Verhaar E; Postema K; Dekker R; Hijmans JM
    PLoS One; 2019; 14(10):e0222388. PubMed ID: 31600227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can Ensemble Deep Learning Identify People by Their Gait Using Data Collected from Multi-Modal Sensors in Their Insole?
    Moon J; Minaya NH; Le NA; Park HC; Choi SI
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A piezoelectric energy-harvesting shoe system for podiatric sensing.
    Meier R; Kelly N; Almog O; Chiang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():622-5. PubMed ID: 25570036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-shoe pressure distribution in "unstable" (MBT) shoes and flat-bottomed training shoes: a comparative study.
    Stewart L; Gibson JN; Thomson CE
    Gait Posture; 2007 Apr; 25(4):648-51. PubMed ID: 16901702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of two insole materials using subjective parameters and pedobarography (pedar-system).
    Pawelka S; Kopf A; Zwick E; Bhm T; Kranzl A
    Clin Biomech (Bristol, Avon); 1997 Apr; 12(3):S6-S7. PubMed ID: 11415703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Powered Smart Insole for Monitoring Human Gait Signals.
    Wang W; Cao J; Yu J; Liu R; Bowen CR; Liao WH
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817067
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy and precision of two in-shoe pressure measurement systems.
    Hsiao H; Guan J; Weatherly M
    Ergonomics; 2002 Jun; 45(8):537-55. PubMed ID: 12167198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The efficiency of gait plate insole for children with in-toeing gait due to femoral antetorsion.
    Ganjehie S; Saeedi H; Farahmand B; Curran S
    Prosthet Orthot Int; 2017 Feb; 41(1):51-57. PubMed ID: 26905082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Turning Analysis during Standardized Test Using On-Shoe Wearable Sensors in Parkinson's Disease.
    Haji Ghassemi N; Hannink J; Roth N; Gaßner H; Marxreiter F; Klucken J; Eskofier BM
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medical-grade footwear: the impact of fit and comfort.
    Hurst B; Branthwaite H; Greenhalgh A; Chockalingam N
    J Foot Ankle Res; 2017; 10():2. PubMed ID: 28070223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Instrumented Shoes for Real-Time Activity Monitoring Applications.
    Moufawad El Achkar C; Lenoble-Hoskovec C; Major K; Paraschiv-Ionescu A; Büla C; Aminian K
    Stud Health Technol Inform; 2016; 225():663-7. PubMed ID: 27332298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of shoe modifications on center of pressure and in-shoe plantar pressures.
    Xu H; Akai M; Kakurai S; Yokota K; Kaneko H
    Am J Phys Med Rehabil; 1999; 78(6):516-24. PubMed ID: 10574166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An umbilical data-acquisition system for measuring pressures between the foot and shoe.
    Zhu HS; Maalej N; Webster JG; Tompkins WJ; Bach-y-Rita P; Wertsch JJ
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):908-11. PubMed ID: 2227977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immediate and short-term effects of wearing a single textured insole on symmetry of stance and gait in healthy adults.
    Ma CC; Lee YJ; Chen B; Aruin AS
    Gait Posture; 2016 Sep; 49():190-195. PubMed ID: 27448047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control conditions for footwear insole and orthotic research.
    Lewinson RT; Worobets JT; Stefanyshyn DJ
    Gait Posture; 2016 Jul; 48():99-105. PubMed ID: 27477717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.