These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 29060692)

  • 1. Prediction and imputation in irregularly sampled clinical time series data using hierarchical linear dynamical models.
    Sengupta A; Ap P; Shukla SN; Rajan V; Reddy CK
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3660-3663. PubMed ID: 29060692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical time series prediction: Toward a hierarchical dynamical system framework.
    Liu Z; Hauskrecht M
    Artif Intell Med; 2015 Sep; 65(1):5-18. PubMed ID: 25534671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data.
    Liu Z; Hauskrecht M
    Proc AAAI Conf Artif Intell; 2016 Feb; 2016():1273-1279. PubMed ID: 27525189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning Linear Dynamical Systems from Multivariate Time Series: A Matrix Factorization Based Framework.
    Liu Z; Hauskrecht M
    Proc SIAM Int Conf Data Min; 2016 May; 2016():810-818. PubMed ID: 27830108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting chaos in irregularly sampled time series.
    Kulp CW
    Chaos; 2013 Sep; 23(3):033110. PubMed ID: 24089946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using forbidden ordinal patterns to detect determinism in irregularly sampled time series.
    Kulp CW; Chobot JM; Niskala BJ; Needhammer CJ
    Chaos; 2016 Feb; 26(2):023107. PubMed ID: 26931588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Joint Models for Reliable Uncertainty-Aware Event Prediction.
    Soleimani H; Hensman J; Saria S
    IEEE Trans Pattern Anal Mach Intell; 2018 Aug; 40(8):1948-1963. PubMed ID: 28841550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis.
    Liu Z; Hauskrecht M
    Proc AAAI Conf Artif Intell; 2015 Jan; 2015():1798-1804. PubMed ID: 25905027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison between discrete and continuous time Bayesian networks in learning from clinical time series data with irregularity.
    Liu M; Stella F; Hommersom A; Lucas PJF; Boer L; Bischoff E
    Artif Intell Med; 2019 Apr; 95():104-117. PubMed ID: 30683464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling sensorimotor learning with linear dynamical systems.
    Cheng S; Sabes PN
    Neural Comput; 2006 Apr; 18(4):760-93. PubMed ID: 16494690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning methods as a tool to analyse incomplete or irregularly sampled radon time series data.
    Janik M; Bossew P; Kurihara O
    Sci Total Environ; 2018 Jul; 630():1155-1167. PubMed ID: 29554737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of multiple imputation methods for missing data in longitudinal studies.
    Huque MH; Carlin JB; Simpson JA; Lee KJ
    BMC Med Res Methodol; 2018 Dec; 18(1):168. PubMed ID: 30541455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variational Inference and Learning of Piecewise Linear Dynamical Systems.
    Alameda-Pineda X; Drouard V; Horaud RP
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3753-3764. PubMed ID: 33571096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Gaussian Processes Methods to Linear methods for Imputation of Sparse Physiological Time Series.
    Nickerson P; Baharloo R; Davoudi A; Bihorac A; Rashidi P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4106-4109. PubMed ID: 30441259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multivariate t linear mixed models for irregularly observed multiple repeated measures with missing outcomes.
    Wang WL
    Biom J; 2013 Jul; 55(4):554-71. PubMed ID: 23740830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed modeling for irregularly sampled and correlated functional data: Speech science applications.
    Pouplier M; Cederbaum J; Hoole P; Marin S; Greven S
    J Acoust Soc Am; 2017 Aug; 142(2):935. PubMed ID: 28863567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From physical linear systems to discrete-time series. A guide for analysis of the sampled experimental data.
    Ślęzak J; Weron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053302. PubMed ID: 26066274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leveraging neural differential equations and adaptive delayed feedback to detect unstable periodic orbits based on irregularly sampled time series.
    Zhu Q; Li X; Lin W
    Chaos; 2023 Mar; 33(3):031101. PubMed ID: 37003829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counting forbidden patterns in irregularly sampled time series. II. Reliability in the presence of highly irregular sampling.
    Sakellariou K; McCullough M; Stemler T; Small M
    Chaos; 2016 Dec; 26(12):123104. PubMed ID: 28039977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GLLS for optimally sampled continuous dynamic system modeling: theory and algorithm.
    Feng D; Ho D; Lau KK; Siu WC
    Comput Methods Programs Biomed; 1999 Apr; 59(1):31-43. PubMed ID: 10215175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.