These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29060697)

  • 1. A generic cardiac biventricular fluid-electromechanics model.
    Bakir AA; Al Abed A; Lovell NH; Dokos S
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3680-3683. PubMed ID: 29060697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multiphysics Biventricular Cardiac Model: Simulations With a Left-Ventricular Assist Device.
    Ahmad Bakir A; Al Abed A; Stevens MC; Lovell NH; Dokos S
    Front Physiol; 2018; 9():1259. PubMed ID: 30271353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New developments in a strongly coupled cardiac electromechanical model.
    Nickerson D; Smith N; Hunter P
    Europace; 2005 Sep; 7 Suppl 2():118-27. PubMed ID: 16102509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational modeling of electromechanical propagation in the helical ventricular anatomy of the heart.
    Marcé-Nogué J; Fortuny G; Ballester-Rodés M; Carreras F; Roure F
    Comput Biol Med; 2013 Nov; 43(11):1698-703. PubMed ID: 24209915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally efficient model of myocardial electromechanics for multiscale simulations.
    Syomin F; Osepyan A; Tsaturyan A
    PLoS One; 2021; 16(7):e0255027. PubMed ID: 34293046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully coupled model for electromechanics of the heart.
    Xia H; Wong K; Zhao X
    Comput Math Methods Med; 2012; 2012():927279. PubMed ID: 23118801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive mathematical model for cardiac perfusion.
    Zingaro A; Vergara C; Dede' L; Regazzoni F; Quarteroni A
    Sci Rep; 2023 Aug; 13(1):14220. PubMed ID: 37648701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully coupled fluid-electro-mechanical model of the human heart for supercomputers.
    Santiago A; Aguado-Sierra J; Zavala-Aké M; Doste-Beltran R; Gómez S; Arís R; Cajas JC; Casoni E; Vázquez M
    Int J Numer Method Biomed Eng; 2018 Dec; 34(12):e3140. PubMed ID: 30117302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of stress and stress-strain approaches for the active contraction in a rat cardiac cycle model.
    Martonová D; Holz D; Seufert J; Duong MT; Alkassar M; Leyendecker S
    J Biomech; 2022 Mar; 134():110980. PubMed ID: 35182900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of left-ventricular shape on end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2887-90. PubMed ID: 19964050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study.
    Colli Franzone P; Pavarino LF; Scacchi S
    Math Biosci; 2016 Oct; 280():71-86. PubMed ID: 27545966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty quantification of 2 models of cardiac electromechanics.
    Hurtado DE; Castro S; Madrid P
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28474497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical approximation of the electromechanical coupling in the left ventricle with inclusion of the Purkinje network.
    Landajuela M; Vergara C; Gerbi A; Dedè L; Formaggia L; Quarteroni A
    Int J Numer Method Biomed Eng; 2018 Jul; 34(7):e2984. PubMed ID: 29575751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2638-41. PubMed ID: 21096187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer heart model incorporating anisotropic propagation. I. Model construction and simulation of normal activation.
    Lorange M; Gulrajani RM
    J Electrocardiol; 1993 Oct; 26(4):245-61. PubMed ID: 8228715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid structure interaction (FSI) simulation of the left ventricle (LV) during the early filling wave (E-wave), diastasis and atrial contraction wave (A-wave).
    Arefin MS; Morsi YS
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):413-23. PubMed ID: 24570150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electromechanical left ventricular wedge model to study the effects of deformation on repolarization during heart failure.
    Rocha BM; Toledo EM; Barra LP; dos Santos RW
    Biomed Res Int; 2015; 2015():465014. PubMed ID: 26550570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.