These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29060756)

  • 1. Development and control of a magnetorheological haptic device for robot assisted surgery.
    Shokrollahi E; Goldenberg AA; Drake JM; Eastwood KW; Kang M
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3926-3929. PubMed ID: 29060756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance evaluation of a robot-assisted catheter operating system with haptic feedback.
    Song Y; Guo S; Yin X; Zhang L; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Jun; 20(2):50. PubMed ID: 29926195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and development of magnetorheological fluid-based passive actuator.
    Shokrollahi E; Price K; Drake JM; Goldenberg AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4883-6. PubMed ID: 26737387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel SEA-based haptic force feedback master hand controller for robotic endovascular intervention system.
    Wang K; Mai X; Xu H; Lu Q; Yan W
    Int J Med Robot; 2020 Oct; 16(5):1-10. PubMed ID: 32306455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Endovascular Catheterization Robotic System Using Collaborative Operation with Magnetically Controlled Haptic Force Feedback.
    Li X; Guo S; Shi P; Jin X; Kawanishi M
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.
    Pacchierotti C; Prattichizzo D; Kuchenbecker KJ
    IEEE Trans Biomed Eng; 2016 Feb; 63(2):278-87. PubMed ID: 26186763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haptic interface for robot-assisted ophthalmic surgery.
    Barthel A; Trematerra D; Nasseri MA; Zapp D; Lohmann CP; Knoll A; Maier M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4906-9. PubMed ID: 26737392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Soft Multi-Axis High Force Range Magnetic Tactile Sensor for Force Feedback in Robotic Surgical Systems.
    Rehan M; Saleem MM; Tiwana MI; Shakoor RI; Cheung R
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
    Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J
    Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear Tracking Control of a Conductive Supercoiled Polymer Actuator.
    Luong TA; Cho KH; Song MG; Koo JC; Choi HR; Moon H
    Soft Robot; 2018 Apr; 5(2):190-203. PubMed ID: 29189106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering.
    Aggravi M; De Momi E; DiMeco F; Cardinale F; Casaceli G; Riva M; Ferrigno G; Prattichizzo D
    Med Biol Eng Comput; 2016 Aug; 54(8):1229-41. PubMed ID: 26718558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Integrated Sensor-Model Approach for Haptic Feedback of Flexible Endoscopic Robots.
    Lai W; Cao L; Tan RX; Tan YC; Li X; Phan PT; Tiong AMH; Tjin SC; Phee SJ
    Ann Biomed Eng; 2020 Jan; 48(1):342-356. PubMed ID: 31485875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Magnetorheological Fluids-Based Robot-Assisted Catheter/Guidewire Surgery System for Endovascular Catheterization.
    Zhang L; Gu S; Guo S; Tamiya T
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34070909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.