These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29060757)

  • 1. Haptic fMRI: Reliability and performance of electromagnetic haptic interfaces for motion and force neuroimaging experiments.
    Menon S; Zhu J; Goyal D; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3930-3935. PubMed ID: 29060757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.
    Menon S; Brantner G; Aholt C; Kay K; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4137-42. PubMed ID: 24110643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic fMRI: using classification to quantify task-correlated noise during goal-directed reaching motions.
    Menon S; Quigley P; Yu M; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2046-50. PubMed ID: 25570386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic fMRI: accurately estimating neural responses in motor, pre-motor, and somatosensory cortex during complex motor tasks.
    Menon S; Yu M; Kay K; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2040-5. PubMed ID: 25570385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of a haptic robot in a 3T fMRI.
    Snider J; Plank M; May L; Liu TT; Poizner H
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 21989084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping stiffness perception in the brain with an fMRI-compatible particle-jamming haptic interface.
    Menon S; Stanley AA; Zhu J; Okamura AM; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2051-6. PubMed ID: 25570387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A haptic force feedback device for virtual reality-fMRI experiments.
    Di Diodato LM; Mraz R; Baker SN; Graham SJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):570-6. PubMed ID: 18198715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phantom haptic device upgrade for use in fMRI.
    Hribar A; Koritnik B; Munih M
    Med Biol Eng Comput; 2009 Jun; 47(6):677-84. PubMed ID: 19263104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional MRI at the crossroads.
    Van Horn JD; Poldrack RA
    Int J Psychophysiol; 2009 Jul; 73(1):3-9. PubMed ID: 19041348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. fMRI-Compatible Electromagnetic Haptic Interface.
    Riener R; Villgrattner T; Kleiser R; Nef T; Kollias S
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7024-7. PubMed ID: 17281892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.
    Whittingstall K; Bartels A; Singh V; Kwon S; Logothetis NK
    Magn Reson Imaging; 2010 Oct; 28(8):1135-42. PubMed ID: 20579829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of oxidative stress in the brain plasticity originated by fasting: a BOLD-fMRI study.
    Belaïch R; Boujraf S; Benzagmout M; Magoul R; Maaroufi M; Tizniti S
    Nutr Neurosci; 2017 Nov; 20(9):505-512. PubMed ID: 27276372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. When the Brain Takes 'BOLD' Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation.
    Sorger B; Kamp T; Weiskopf N; Peters JC; Goebel R
    Neuroscience; 2018 May; 378():71-88. PubMed ID: 27659118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training.
    Maddahi Y; Zareinia K; Tomanek B; Sutherland GR
    Proc Inst Mech Eng H; 2018 Oct; ():954411918806934. PubMed ID: 30355029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution.
    Yoo PE; John SE; Farquharson S; Cleary JO; Wong YT; Ng A; Mulcahy CB; Grayden DB; Ordidge RJ; Opie NL; O'Brien TJ; Oxley TJ; Moffat BA
    Neuroimage; 2018 Jan; 164():214-229. PubMed ID: 28286317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability of supraspinal correlates to lower urinary tract stimulation in healthy participants - A fMRI study.
    Walter M; Leitner L; Michels L; Liechti MD; Freund P; Kessler TM; Kollias S; Mehnert U
    Neuroimage; 2019 May; 191():481-492. PubMed ID: 30776530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRI brain mapping during motion capture and FES induced motor tasks: signal to noise ratio assessment.
    Gandolla M; Ferrante S; Casellato C; Ferrigno G; Molteni F; Martegani A; Frattini T; Pedrocchi A
    Med Eng Phys; 2011 Oct; 33(8):1027-32. PubMed ID: 21550290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing BOLD response in the auditory system by neurophysiologically tuned fMRI sequence.
    Seifritz E; Di Salle F; Esposito F; Herdener M; Neuhoff JG; Scheffler K
    Neuroimage; 2006 Feb; 29(3):1013-22. PubMed ID: 16253522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation mapping as a percentage of local excitation: fMRI stability within scans, between scans and across field strengths.
    Voyvodic JT
    Magn Reson Imaging; 2006 Nov; 24(9):1249-61. PubMed ID: 17071346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery.
    Plichta MM; Schwarz AJ; Grimm O; Morgen K; Mier D; Haddad L; Gerdes AB; Sauer C; Tost H; Esslinger C; Colman P; Wilson F; Kirsch P; Meyer-Lindenberg A
    Neuroimage; 2012 Apr; 60(3):1746-58. PubMed ID: 22330316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.