These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29060758)

  • 21. A tactile sensor using the acoustic reflection principle for assessing the contact force component in laparoscopic tumor localization.
    Ly HH; Tanaka Y; Fujiwara M
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):289-299. PubMed ID: 33389604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel 4-DOF surgical instrument with modular joints and 6-Axis Force sensing capability.
    Li K; Pan B; Zhang F; Gao W; Fu Y; Wang S
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 27291158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A large area tactile sensor patch based on commercial force sensors.
    Vidal-Verdú F; Barquero MJ; Castellanos-Ramos J; Navas-González R; Sánchez JA; Serón J; García-Cerezo A
    Sensors (Basel); 2011; 11(5):5489-507. PubMed ID: 22163910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. External force estimation and implementation in robotically assisted minimally invasive surgery.
    Sang H; Yun J; Monfaredi R; Wilson E; Fooladi H; Cleary K
    Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 28466997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery.
    Bandari NM; Ahmadi R; Hooshiar A; Dargahi J; Packirisamy M
    J Biomed Opt; 2017 Jul; 22(7):77002. PubMed ID: 28734117
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A High-Precision and Miniature Fiber Bragg Grating-Based Force Sensor for Tissue Palpation During Minimally Invasive Surgery.
    Lv C; Wang S; Shi C
    Ann Biomed Eng; 2020 Feb; 48(2):669-681. PubMed ID: 31686311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions.
    Hamed AM; Tse ZT; Young I; Davies BL; Lampérth M
    Proc Inst Mech Eng H; 2009 Jan; 223(1):99-110. PubMed ID: 19239071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Force feedback plays a significant role in minimally invasive surgery: results and analysis.
    Tholey G; Desai JP; Castellanos AE
    Ann Surg; 2005 Jan; 241(1):102-9. PubMed ID: 15621997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Texture differentiation using audio signal analysis with robotic interventional instruments.
    Chen CH; Sühn T; Kalmar M; Maldonado I; Wex C; Croner R; Boese A; Friebe M; Illanes A
    Comput Biol Med; 2019 Sep; 112():103370. PubMed ID: 31374348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems.
    Friedrich DT; Dürselen L; Mayer B; Hacker S; Schall F; Hahn J; Hoffmann TK; Schuler PJ; Greve J
    J Robot Surg; 2018 Mar; 12(1):103-108. PubMed ID: 28470408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and development of a non-contact robotic gripper for tissue manipulation in minimally invasive surgery.
    Ertürk Ş; Erzincanlı F
    Acta Biomed; 2020 Sep; 91(3):e2020071. PubMed ID: 32921769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel method in measuring the stiffness of sensed objects with applications for biomedical robotic systems.
    Najarian S; Dargahi J; Zheng XZ
    Int J Med Robot; 2006 Mar; 2(1):84-90. PubMed ID: 17520617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3-Axis Fully-Integrated Capacitive Tactile Sensor with Flip-Bonded CMOS on LTCC Interposer.
    Asano S; Muroyama M; Nakayama T; Hata Y; Nonomura Y; Tanaka S
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29068429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and static calibration of a six-dimensional force/torque sensor for minimally invasive surgery.
    Yu H; Jiang J; Xie L; Liu L; Shi Y; Cai P
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):136-43. PubMed ID: 24345276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BaroTac: Barometric Three-Axis Tactile Sensor with Slip Detection Capability.
    Kim G; Hwang D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A grasping forceps with a triaxial MEMS tactile sensor for quantification of stresses on organs.
    Kuwana K; Nakai A; Masamune K; Dohi T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4490-3. PubMed ID: 24110731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smart Laparoscopic Grasper Utilizing Force and Angle Sensors for Stiffness Assessment in Minimally Invasive Surgery
    Othman W; Qasaimeh MA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7336-7339. PubMed ID: 34892792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.