These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 29060758)

  • 41. Sensorized guidewires with MEMS tri-axial force sensor for minimally invasive surgical applications.
    Lou L; Ramakrishna K; Shao L; Park WT; Yu D; Lim L; Wee Y; Kripesh V; Feng H; Chua BS; Lee C; Kwong DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6461-4. PubMed ID: 21096718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The MUSHA underactuated hand for robot-aided minimally invasive surgery.
    Selvaggio M; Fontanelli GA; Marrazzo VR; Bracale U; Irace A; Breglio G; Villani L; Siciliano B; Ficuciello F
    Int J Med Robot; 2019 Jun; 15(3):e1981. PubMed ID: 30588772
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pneumatically driven surgical instrument capable of estimating translational force and grasping force.
    Miyazaki R; Kanno T; Kawashima K
    Int J Med Robot; 2019 Jun; 15(3):e1983. PubMed ID: 30648783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array.
    Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T
    Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A continuum body force sensor designed for flexible surgical robotics devices.
    Noh Y; Secco EL; Sareh S; Wurdemann H; Faragasso A; Back J; Liu H; Sklar E; Althoefer K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3711-4. PubMed ID: 25570797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and Performance of a Low-Cost Telemetric Laparoscopic Tactile Grasper.
    Schostek S; Zimmermann M; Schurr MO; Prosst RL
    Surg Innov; 2016 Jun; 23(3):291-7. PubMed ID: 26546367
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A polymer-based capacitive sensing array for normal and shear force measurement.
    Cheng MY; Lin CL; Lai YT; Yang YJ
    Sensors (Basel); 2010; 10(11):10211-25. PubMed ID: 22163466
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations.
    Ahmadi R; Packirisamy M; Dargahi J
    J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A resonant tactile stiffness sensor for lump localization in robot-assisted minimally invasive surgery.
    Yun Y; Wang Y; Guo H; Wang Y; Wu H; Chen B; Ju F
    Proc Inst Mech Eng H; 2019 Sep; 233(9):909-920. PubMed ID: 31210594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Integration of a miniaturised triaxial force sensor in a minimally invasive surgical tool.
    Valdastri P; Harada K; Menciassi A; Beccai L; Stefanini C; Fujie M; Dario P
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2397-400. PubMed ID: 17073346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A 3D-Printed Soft Fingertip Sensor for Providing Information about Normal and Shear Components of Interaction Forces.
    Wolterink G; Sanders R; van Beijnum BJ; Veltink P; Krijnen G
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206438
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Disposable Stiffness Sensor for Endoscopic Examination.
    Faragasso A; Bimbo JO; Yamashita A; Asama H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4309-4312. PubMed ID: 30441307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An inductive sensor for real-time measurement of plantar normal and shear forces distribution.
    Du L; Zhu X; Zhe J
    IEEE Trans Biomed Eng; 2015 May; 62(5):1316-23. PubMed ID: 25546856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial tactile sensing in minimally invasive surgery - a new technical approach.
    Schostek S; Ho CN; Kalanovic D; Schurr MO
    Minim Invasive Ther Allied Technol; 2006; 15(5):296-304. PubMed ID: 17062404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A tactile feedback system for robotic surgery.
    Culjat MO; King CH; Franco ML; Lewis CE; Bisley JW; Dutson EP; Grundfest WS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1930-4. PubMed ID: 19163068
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Soft Multi-Directional Force Sensor for Underwater Robotic Application.
    Subad RASI; Saikot MMH; Park K
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632258
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Piezoresistive Tactile Sensor Discriminating Multidirectional Forces.
    Jung Y; Lee DG; Park J; Ko H; Lim H
    Sensors (Basel); 2015 Oct; 15(10):25463-73. PubMed ID: 26445045
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Printed Soft Sensor with Passivation Layers for the Detection of Object Slippage by a Robotic Gripper.
    Miura R; Sekine T; Wang YF; Hong J; Watanabe Y; Ito K; Shouji Y; Takeda Y; Kumaki D; Santos FDD; Miyabo A; Tokito S
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33049953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.