These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29060795)

  • 1. Real-time estimation of eye gaze by in-ear electrodes.
    Favre-Felix A; Graversen C; Dau T; Lunner T
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4086-4089. PubMed ID: 29060795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absolute Eye Gaze Estimation With Biosensors in Hearing Aids.
    Favre-Félix A; Graversen C; Bhuiyan TA; Skoglund MA; Rotger-Griful S; Rank ML; Dau T; Lunner T
    Front Neurosci; 2019; 13():1294. PubMed ID: 31920477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography.
    Hládek Ľ; Porr B; Brimijoin WO
    PLoS One; 2018; 13(1):e0190420. PubMed ID: 29304120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording.
    Jia Y; Tyler CW
    Behav Res Methods; 2019 Oct; 51(5):2139-2151. PubMed ID: 31313136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Gaze Estimation Based on Nonlinearity of EOG.
    Manabe H; Fukumoto M; Yagi T
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1553-62. PubMed ID: 25615905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing In-ear EOG for Eye-Movement Estimation With Eye-Tracking: Accuracy, Calibration, and Speech Comprehension.
    Skoglund MA; Andersen M; Shiell MM; Keidser G; Rank ML; Rotger-Griful S
    Front Neurosci; 2022; 16():873201. PubMed ID: 35844213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking eye fixations with electroocular and electroencephalographic recordings.
    Joyce CA; Gorodnitsky IF; King JW; Kutas M
    Psychophysiology; 2002 Sep; 39(5):607-18. PubMed ID: 12236327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing EOG From EEG Timeseries: A Spatial Filtering Approach.
    Kalaganis FP; Seet M; Georgiadis K; Oikonomou VP; Laskaris NA; Nikolopoulos S; Kompatsiaris I; Panou M; Dragomir A; Bezerianos A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():395-398. PubMed ID: 34891317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms.
    Chang WD; Cha HS; Im CH
    Sensors (Basel); 2016 Feb; 16(2):227. PubMed ID: 26907271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EOG-Based Gaze Angle Estimation Using a Battery Model of the Eye.
    Barbara N; Camilleri TA; Camilleri KP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6918-6921. PubMed ID: 31947430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Eye movement detection with the aid of the oculogram in shifting the gaze].
    Belov DR; Eram SIu; Kolodiazhnyĭ SF; Kanunikov IE; Getmanenko OV
    Ross Fiziol Zh Im I M Sechenova; 2009 Apr; 95(4):347-58. PubMed ID: 19505037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J; Zhou Z; Yin E; Yu Y; Hu D
    Biomed Mater Eng; 2014; 24(6):2919-25. PubMed ID: 25226998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parietal lobe mechanisms for directed visual attention.
    Lynch JC; Mountcastle VB; Talbot WH; Yin TC
    J Neurophysiol; 1977 Mar; 40(2):362-89. PubMed ID: 403251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Robust Gaze Estimation Approach via Exploring Relevant Electrooculogram Features and Optimal Electrodes Placements.
    Zeng Z; Tao L; Zhu H; Zhu Y; Meng L; Fan J; Chen C; Chen W
    IEEE J Transl Eng Health Med; 2024; 12():56-65. PubMed ID: 38088999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaze Estimation Method Using Analysis of Electrooculogram Signals and Kinect Sensor.
    Sakurai K; Yan M; Tanno K; Tamura H
    Comput Intell Neurosci; 2017; 2017():2074752. PubMed ID: 28912800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Event-Related Potentials Measured From In and Around the Ear Electrodes Integrated in a Live Hearing Device for Monitoring Sound Perception.
    Denk F; Grzybowski M; Ernst SMA; Kollmeier B; Debener S; Bleichner MG
    Trends Hear; 2018; 22():2331216518788219. PubMed ID: 30022733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monopolar and bipolar electrooculography signal characteristics due to target displacements-have we seen the whole picture?
    Barbara N; Camilleri TA; Camilleri KP
    Physiol Meas; 2023 Mar; 44(3):. PubMed ID: 36599169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating neural correlates of locomotion transition via temporal relation of EEG and EOG-recorded eye movements.
    Mehra D; Tiwari A; Joshi D
    Comput Biol Med; 2021 May; 132():104350. PubMed ID: 33799217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of electro-oculographic artifact during vertical saccadic eye movements.
    Chioran GM; Yee RD
    Graefes Arch Clin Exp Ophthalmol; 1991; 229(3):237-41. PubMed ID: 1869058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Correction of EOG with eye movement measured by the eye mark recorder system].
    Itsuki N; Kubo M
    Nippon Ganka Gakkai Zasshi; 1991 Nov; 95(11):1085-93. PubMed ID: 1759648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.