BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29060805)

  • 1. Design and control of a 3-DOF rehabilitation robot for forearm and wrist.
    Lincong Luo ; Liang Peng ; Zengguang Hou ; Weiqun Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4127-4130. PubMed ID: 29060805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Wrist Gimbal: a forearm and wrist exoskeleton for stroke rehabilitation.
    Martinez JA; Ng P; Lu S; Campagna MS; Celik O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650459. PubMed ID: 24187276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.
    Masia L; Casadio M; Giannoni P; Sandini G; Morasso P
    J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the Biomech-Wrist: A 3-DOF Exoskeleton for Rehabilitation and Training of Human Wrist.
    Garcia-Leal R; Cruz-Ortiz D; Ballesteros M; Huegel JC
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and testing of a soft parallel robot based on pneumatic artificial muscles for wrist rehabilitation.
    Wang Y; Xu Q
    Sci Rep; 2021 Jan; 11(1):1273. PubMed ID: 33446771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke.
    Allington J; Spencer SJ; Klein J; Buell M; Reinkensmeyer DJ; Bobrow J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1579-82. PubMed ID: 22254624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wrist proprioceptive acuity: A comprehensive robot-aided assessment.
    Cappello L; Contu S; Konczak J; Masia L
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3594-7. PubMed ID: 26737070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Estimation of Human Forearm and Wrist Dynamic Properties.
    Park K; Chang PH; Kang SH
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):436-446. PubMed ID: 27249835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects.
    Khor KX; Chin PJH; Yeong CF; Su ELM; Narayanan ALT; Abdul Rahman H; Khan QI
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1864-1873. PubMed ID: 28410110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of the Leap Motion Controller using markered motion capture technology.
    Smeragliuolo AH; Hill NJ; Disla L; Putrino D
    J Biomech; 2016 Jun; 49(9):1742-1750. PubMed ID: 27102160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the ROM of wrist movements in stroke patients by means of a haptic wrist robot.
    Squeri V; Masia L; Taverna L; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2077-80. PubMed ID: 22254746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of wrist and forearm rotations.
    Peaden AW; Charles SK
    J Biomech; 2014 Aug; 47(11):2779-85. PubMed ID: 24745814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wrist-RoboHab: a robot for treatment and evaluation of brain injury patients.
    Baniasad MA; Farahmand M; Ansari NN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975506. PubMed ID: 22275702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive stiffness of coupled wrist and forearm rotations.
    Drake WB; Charles SK
    Ann Biomed Eng; 2014 Sep; 42(9):1853-66. PubMed ID: 24912766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal functional range of motion of upper limb joints during performance of three feeding activities.
    Safaee-Rad R; Shwedyk E; Quanbury AO; Cooper JE
    Arch Phys Med Rehabil; 1990 Jun; 71(7):505-9. PubMed ID: 2350221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal haptic drive: a robot for arm and wrist rehabilitation.
    Oblak J; Cikajlo I; Matjacić Z
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):293-302. PubMed ID: 19846386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of redundant pointing movements involving the wrist and forearm.
    Dorman GR; Davis KC; Peaden AW; Charles SK
    J Neurophysiol; 2018 Oct; 120(4):2138-2154. PubMed ID: 29947599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the ROM of wrist movements in stroke patients by means of a haptic wrist robot.
    Squeri V; Masia L; Taverna L; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1268-71. PubMed ID: 22254547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.