BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29060805)

  • 21. Variation of Grip Strength and Wrist Range of Motion with Forearm Rotation in Healthy Young Volunteers Aged 23 to 30.
    Fan S; Cepek J; Symonette C; Ross D; Chinchalkar S; Grant A
    J Hand Microsurg; 2019 Aug; 11(2):88-93. PubMed ID: 31413492
    [No Abstract]   [Full Text] [Related]  

  • 22. Wrist tendon forces with respect to forearm rotation.
    Farr LD; Werner FW; McGrattan ML; Zwerling SR; Harley BJ
    J Hand Surg Am; 2013 Jan; 38(1):35-9. PubMed ID: 23218559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot].
    Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of measurement accuracy between two wrist goniometer systems during pronation and supination.
    Johnson PW; Jonsson P; Hagberg M
    J Electromyogr Kinesiol; 2002 Oct; 12(5):413-20. PubMed ID: 12223175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relative Contribution of the Subsheath to Extensor Carpi Ulnaris Tendon Stability: Implications for Surgical Reconstruction and Rehabilitation.
    Ghatan AC; Puri SG; Morse KW; Hearns KA; von Althann C; Carlson MG
    J Hand Surg Am; 2016 Feb; 41(2):225-32. PubMed ID: 26691954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robot-aided developmental assessment of wrist proprioception in children.
    Marini F; Squeri V; Morasso P; Campus C; Konczak J; Masia L
    J Neuroeng Rehabil; 2017 Jan; 14(1):3. PubMed ID: 28069028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair.
    Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S
    Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a self-aligning 3-DOF actuated exoskeleton for diagnosis and training of wrist and forearm after stroke.
    Beekhuis JH; Westerveld AJ; van der Kooij H; Stienen AH
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650357. PubMed ID: 24187176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Post-stroke wrist rehabilitation assisted with an intention-driven functional electrical stimulation (FES)-robot system.
    Hu XL; Tong KY; Li R; Chen M; Xue JJ; Ho SK; Chen PN
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975424. PubMed ID: 22275625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace.
    Marini F; Squeri V; Morasso P; Konczak J; Masia L
    PLoS One; 2016; 11(8):e0161155. PubMed ID: 27536882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.
    Shi K; Song A; Li Y; Li H; Chen D; Zhu L
    Front Neurorobot; 2021; 15():664062. PubMed ID: 33897402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperstaticity for ergonomie design of a wrist exoskeleton.
    Esmaeili M; Jarrassé N; Dailey W; Burdet E; Campolo D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650417. PubMed ID: 24187236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual estimation of pro-supination angle is superior to wrist or elbow angles.
    Luria S; Apt E; Kandel L; Bdolah-Abram T; Zinger G
    Phys Sportsmed; 2015 May; 43(2):155-60. PubMed ID: 25882630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pediatric rehabilitation with the reachMAN's modular handle.
    Tong LZ; Ong HT; Tan JX; Lin J; Burdet E; Ge SS; Teo CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3933-6. PubMed ID: 26737154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation between dorsovolar translation and rotation of the radius on the distal radioulnar joint during supination and pronation of forearm.
    Lee SK; Song YD; Choy WS
    Acta Orthop Belg; 2015 Sep; 81(3):511-22. PubMed ID: 26435248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of wrist flexion and extension torques in different forearm positions.
    Yoshii Y; Yuine H; Kazuki O; Tung WL; Ishii T
    Biomed Eng Online; 2015 Dec; 14():115. PubMed ID: 26830913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrarater Reliability of Range of Motion Measurements of the Uninjured Wrist in Women After Distal Radius Fracture.
    Johnston GHF; Stewart SA
    J Hand Surg Am; 2018 Jan; 43(1):1-7. PubMed ID: 29032873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and Electromyographic Validation of a Compliant Human-Robot Interaction Controller for Cooperative and Personalized Neurorehabilitation.
    Dalla Gasperina S; Longatelli V; Braghin F; Pedrocchi A; Gandolla M
    Front Neurorobot; 2021; 15():734130. PubMed ID: 35115915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation and Verification of A Novel Wrist Rehabilitation Robot employing Safety-related Mechanism.
    Bae JH; Hwang SJ; Moon I
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():288-293. PubMed ID: 31374644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.