These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29060817)

  • 1. Virtual reality body motion induced navigational controllers and their effects on simulator sickness and pathfinding.
    Aldaba CN; White PJ; Byagowi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4175-4178. PubMed ID: 29060817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Application of a Novel Virtual Reality Navigational Technology (VRNChair).
    Byagowi A; Mohaddes D; Moussavi Z
    J Exp Neurosci; 2014; 8():7-14. PubMed ID: 25161366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of viewing mode on pathfinding in immersive Virtual Reality.
    White PJ; Byagowi A; Moussavi Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4619-22. PubMed ID: 26737323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of bone-conducted vibration on simulator sickness in virtual reality.
    Weech S; Moon J; Troje NF
    PLoS One; 2018; 13(3):e0194137. PubMed ID: 29590147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion sickness and sense of presence in a virtual reality environment developed for manual wheelchair users, with three different approaches.
    Salimi Z; Ferguson-Pell MW
    PLoS One; 2021; 16(8):e0255898. PubMed ID: 34411151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of navigation interfaces in virtual reality environments: A mixed-method approach.
    Kim YM; Rhiu I
    Appl Ergon; 2021 Oct; 96():103482. PubMed ID: 34116411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness.
    Tychsen L; Foeller P
    Am J Ophthalmol; 2020 Jan; 209():151-159. PubMed ID: 31377280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Psychometric evaluation of Simulator Sickness Questionnaire and its variants as a measure of cybersickness in consumer virtual environments.
    Sevinc V; Berkman MI
    Appl Ergon; 2020 Jan; 82():102958. PubMed ID: 31563798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sick Moves! Motion Parameters as Indicators of Simulator Sickness.
    Feigl T; Roth D; Gradl S; Wirth M; Latoschik ME; Eskofier BM; Philippsen M; Mutschler C
    IEEE Trans Vis Comput Graph; 2019 Nov; 25(11):3146-3157. PubMed ID: 31425036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological Gait versus Gait in VR on Multidirectional Treadmill-Comparative Analysis.
    Jochymczyk-Woźniak K; Nowakowska K; Polechoński J; Sładczyk S; Michnik R
    Medicina (Kaunas); 2019 Aug; 55(9):. PubMed ID: 31443382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual and augmented reality in a simulated naval engagement: Preliminary comparisons of simulator sickness and human performance.
    Pettijohn KA; Peltier C; Lukos JR; Norris JN; Biggs AT
    Appl Ergon; 2020 Nov; 89():103200. PubMed ID: 32658772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual reality environment design of managing both presence and virtual reality sickness.
    Tanaka N; Takagi H
    J Physiol Anthropol Appl Human Sci; 2004 Nov; 23(6):313-7. PubMed ID: 15599082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel neurodigital interface reduces motion sickness in virtual reality.
    Dopsaj M; Tan W; Perovic V; Stajic Z; Milosavljevic N; Paessler S; Makishima T
    Neurosci Lett; 2024 Mar; 825():137692. PubMed ID: 38382798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Body Size Match to an Avatar on the Body Ownership Illusion and User's Subjective Experience.
    Kim SY; Park H; Jung M; Kim KK
    Cyberpsychol Behav Soc Netw; 2020 Apr; 23(4):234-241. PubMed ID: 32074457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An evaluation for VR glasses system user experience: The influence factors of interactive operation and motion sickness.
    Yu M; Zhou R; Wang H; Zhao W
    Appl Ergon; 2019 Jan; 74():206-213. PubMed ID: 30487101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of screen configuration on the neck angle, muscle activity, and simulator sickness symptoms in virtual reality.
    Pokhrel S; Hwang J
    Work; 2024; 79(1):167-175. PubMed ID: 38217564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powered wheelchair simulator development: implementing combined navigation-reaching tasks with a 3D hand motion controller.
    Tao G; Archambault PS
    J Neuroeng Rehabil; 2016 Jan; 13():3. PubMed ID: 26786110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.
    Borrego A; Latorre J; Llorens R; Alcañiz M; Noé E
    J Neuroeng Rehabil; 2016 Aug; 13(1):68. PubMed ID: 27503112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.