These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 29060817)
21. Feasibility of using virtual reality in geriatric psychiatry. Just SA; Lütt A; Siegle P; Döring-Brandl EJ Int J Geriatr Psychiatry; 2024 Jan; 39(1):e6060. PubMed ID: 38241061 [TBL] [Abstract][Full Text] [Related]
22. Cybersickness in the presence of scene rotational movements along different axes. Lo WT; So RH Appl Ergon; 2001 Feb; 32(1):1-14. PubMed ID: 11209825 [TBL] [Abstract][Full Text] [Related]
23. HeadJoystick: Improving Flying in VR Using a Novel Leaning-Based Interface. Hashemian AM; Lotfaliei M; Adhikari A; Kruijff E; Riecke BE IEEE Trans Vis Comput Graph; 2022 Apr; 28(4):1792-1809. PubMed ID: 32946395 [TBL] [Abstract][Full Text] [Related]
24. The potential use of virtual reality in vestibular rehabilitation of motion sickness. Ugur E; Konukseven BO Auris Nasus Larynx; 2022 Oct; 49(5):768-781. PubMed ID: 35125243 [TBL] [Abstract][Full Text] [Related]
25. Clinical predictors of cybersickness in virtual reality (VR) among highly stressed people. Kim H; Kim DJ; Chung WH; Park KA; Kim JDK; Kim D; Kim K; Jeon HJ Sci Rep; 2021 Jun; 11(1):12139. PubMed ID: 34108520 [TBL] [Abstract][Full Text] [Related]
26. Restricting the distribution of visual attention reduces cybersickness. Yip SH; Saunders JA Cogn Res Princ Implic; 2023 Mar; 8(1):18. PubMed ID: 36929248 [TBL] [Abstract][Full Text] [Related]
27. Analysis on Mitigation of Visually Induced Motion Sickness by Applying Dynamical Blurring on a User's Retina. Nie GY; Duh HB; Liu Y; Wang Y IEEE Trans Vis Comput Graph; 2020 Aug; 26(8):2535-2545. PubMed ID: 30668475 [TBL] [Abstract][Full Text] [Related]
28. EEG effects of motion sickness induced in a dynamic virtual reality environment. Lin CT; Chuang SW; Chen YC; Ko LW; Liang SF; Jung TP Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3872-5. PubMed ID: 18002844 [TBL] [Abstract][Full Text] [Related]
29. Effects of within-day intervals on adaptation to visually induced motion sickness in a virtual-reality motorcycling simulator. Kasegawa C; Itaguchi Y; Yamawaki Y; Miki M; Hayashi M; Miyazaki M Sci Rep; 2024 Sep; 14(1):21302. PubMed ID: 39307847 [TBL] [Abstract][Full Text] [Related]
30. Gaze direction affects walking speed when using a self-paced treadmill with a virtual reality environment. Jeschke AM; de Groot LE; van der Woude LHV; Oude Lansink ILB; van Kouwenhove L; Hijmans JM Hum Mov Sci; 2019 Oct; 67():102498. PubMed ID: 31330475 [TBL] [Abstract][Full Text] [Related]
31. EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality. Yeo SS; Kwon JW; Park SY Sci Rep; 2022 Oct; 12(1):18043. PubMed ID: 36302810 [TBL] [Abstract][Full Text] [Related]
32. Potential factors contributing to observed sex differences in virtual-reality-induced sickness. Bannigan GM; de Sousa AA; Scheller M; Finnegan DJ; Proulx MJ Exp Brain Res; 2024 Feb; 242(2):463-475. PubMed ID: 38170233 [TBL] [Abstract][Full Text] [Related]
34. Developing a virtual reality-based methodology for people with dementia: a feasibility study. Flynn D; van Schaik P; Blackman T; Femcott C; Hobbs B; Calderon C Cyberpsychol Behav; 2003 Dec; 6(6):591-611. PubMed ID: 14756925 [TBL] [Abstract][Full Text] [Related]
35. Test-retest reliability of the virtual reality sickness evaluation using electroencephalography (EEG). Lim HK; Ji K; Woo YS; Han DU; Lee DH; Nam SG; Jang KM Neurosci Lett; 2021 Jan; 743():135589. PubMed ID: 33359731 [TBL] [Abstract][Full Text] [Related]
36. Mitigating Cybersickness in Virtual Reality Systems through Foveated Depth-of-Field Blur. Hussain R; Chessa M; Solari F Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200616 [TBL] [Abstract][Full Text] [Related]
37. The More, the Better? Improving VR Firefighting Training System with Realistic Firefighter Tools as Controllers. Jeon S; Paik S; Yang U; Shih PC; Han K Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770500 [TBL] [Abstract][Full Text] [Related]
38. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation. Hirota M; Kanda H; Endo T; Miyoshi T; Miyagawa S; Hirohara Y; Yamaguchi T; Saika M; Morimoto T; Fujikado T Ergonomics; 2019 Jun; 62(6):759-766. PubMed ID: 30773103 [TBL] [Abstract][Full Text] [Related]
39. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools. Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439 [TBL] [Abstract][Full Text] [Related]
40. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task. Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]