These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 29060827)
1. A framework for simulating gastric electrical propagation in confocal microscopy derived geometries. Krohn B; Sathar S; Rohrle O; Vanderwinden JM; O'Grady G; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4215-4218. PubMed ID: 29060827 [TBL] [Abstract][Full Text] [Related]
2. Supervised Machine Learning Segmentation and Quantification of Gastric Pacemaker Cells. Mah SA; Avci R; Du P; Vanderwinden JM; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1408-1411. PubMed ID: 33018253 [TBL] [Abstract][Full Text] [Related]
3. Tissue specific simulations of interstitial cells of cajal networks using unstructured meshes. Sathar S; Trew ML; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():8062-5. PubMed ID: 26738164 [TBL] [Abstract][Full Text] [Related]
4. Antral Variation of Murine Gastric Pacemaker Cells Informed by Confocal Imaging and Machine Learning Methods. Mah SA; Avci R; Du P; Vanderwinden JM; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3105-3108. PubMed ID: 34891899 [TBL] [Abstract][Full Text] [Related]
5. A novel compartmental approach for modeling stomach motility and gastric emptying. Fernandes SQ; Kothare MV; Mahmoudi B Comput Biol Med; 2024 Oct; 181():109035. PubMed ID: 39213708 [TBL] [Abstract][Full Text] [Related]
6. Interstitial cells of cajal generate electrical slow waves in the murine stomach. Ordög T; Ward SM; Sanders KM J Physiol; 1999 Jul; 518(Pt 1):257-69. PubMed ID: 10373707 [TBL] [Abstract][Full Text] [Related]
7. Generation and propagation of gastric slow waves. van Helden DF; Laver DR; Holdsworth J; Imtiaz MS Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430 [TBL] [Abstract][Full Text] [Related]
8. On a coupled electro-chemomechanical model of gastric smooth muscle contraction. Klemm L; Seydewitz R; Borsdorf M; Siebert T; Böl M Acta Biomater; 2020 Jun; 109():163-181. PubMed ID: 32294551 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional multi-field modelling of gastric arrhythmias and their effects on antral contractions. Klemm L; Seydewitz R; Siebert T; Böl M Comput Biol Med; 2023 Feb; 153():106488. PubMed ID: 36592609 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Regional Variations of the Interstitial Cells of Cajal in the Murine Distal Stomach Informed by Confocal Imaging and Machine Learning Methods. Mah SA; Du P; Avci R; Vanderwinden JM; Cheng LK Cell Mol Bioeng; 2022 Apr; 15(2):193-205. PubMed ID: 35401841 [TBL] [Abstract][Full Text] [Related]
11. Engaging biological oscillators through second messenger pathways permits emergence of a robust gastric slow-wave during peristalsis. Ahmed MA; Venugopal S; Jung R PLoS Comput Biol; 2021 Dec; 17(12):e1009644. PubMed ID: 34871315 [TBL] [Abstract][Full Text] [Related]
12. The functional role of intramuscular interstitial cells of Cajal in the stomach. Kito Y J Smooth Muscle Res; 2011; 47(2):47-53. PubMed ID: 21757854 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of High-Resolution Electrical Mapping for Characterizing Conduction Blocks Created by Gastric Ablation. Aghababaie Z; Chan CA; Paskaranandavadivel N; Beyder A; Farrugia G; Asirvatham S; O'Grady G; Cheng LK; Angeli TR Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():170-173. PubMed ID: 31945871 [TBL] [Abstract][Full Text] [Related]
14. Cellular automaton model for simulating tissue-specific intestinal electrophysiological activity. Gao J; Du P; O'Grady G; Archer R; Gibbons SJ; Farrugia G; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5537-40. PubMed ID: 24110991 [TBL] [Abstract][Full Text] [Related]
15. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators. Wei R; Parsons SP; Huizinga JD Exp Physiol; 2017 Mar; 102(3):329-346. PubMed ID: 28036151 [TBL] [Abstract][Full Text] [Related]
16. Propagation of slow waves requires IP3 receptors and mitochondrial Ca2+ uptake in canine colonic muscles. Ward SM; Baker SA; de Faoite A; Sanders KM J Physiol; 2003 May; 549(Pt 1):207-18. PubMed ID: 12665604 [TBL] [Abstract][Full Text] [Related]
17. The impact of surgical excisions on human gastric slow wave conduction, defined by high-resolution electrical mapping and in silico modeling. Du P; Hameed A; Angeli TR; Lahr C; Abell TL; Cheng LK; O'Grady G Neurogastroenterol Motil; 2015 Oct; 27(10):1409-22. PubMed ID: 26251163 [TBL] [Abstract][Full Text] [Related]
18. Ionic conductances involved in generation and propagation of electrical slow waves in phasic gastrointestinal muscles. Sanders KM; Koh SD; Ordög T; Ward SM Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():100-5. PubMed ID: 15066013 [TBL] [Abstract][Full Text] [Related]
19. Tissue-specific mathematical models of slow wave entrainment in wild-type and 5-HT(2B) knockout mice with altered interstitial cells of Cajal networks. Du P; O'Grady G; Gibbons SJ; Yassi R; Lees-Green R; Farrugia G; Cheng LK; Pullan AJ Biophys J; 2010 May; 98(9):1772-81. PubMed ID: 20441740 [TBL] [Abstract][Full Text] [Related]
20. A preliminary model of gastrointestinal electromechanical coupling. Du P; Poh YC; Lim JL; Gajendiran V; O'Grady G; Buist ML; Pullan AJ; Cheng LK IEEE Trans Biomed Eng; 2011 Dec; 58(12):3491-5. PubMed ID: 21878406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]