These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29060834)

  • 1. Robot-assisted mirroring exercise as a physical therapy for hemiparesis rehabilitation.
    Jihun Kim ; Jaehyo Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4243-4246. PubMed ID: 29060834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients.
    Cordo P; Lutsep H; Cordo L; Wright WG; Cacciatore T; Skoss R
    Neurorehabil Neural Repair; 2009 Jan; 23(1):67-77. PubMed ID: 18645190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of wrist flexion and extension torques in different forearm positions.
    Yoshii Y; Yuine H; Kazuki O; Tung WL; Ishii T
    Biomed Eng Online; 2015 Dec; 14():115. PubMed ID: 26830913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint-angle-dependent neuromuscular dysfunctions at the wrist in persons after stroke.
    Hu X; Tong K; Tsang VS; Song R
    Arch Phys Med Rehabil; 2006 May; 87(5):671-9. PubMed ID: 16635630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects.
    Hesse S; Schulte-Tigges G; Konrad M; Bardeleben A; Werner C
    Arch Phys Med Rehabil; 2003 Jun; 84(6):915-20. PubMed ID: 12808550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke.
    Allington J; Spencer SJ; Klein J; Buell M; Reinkensmeyer DJ; Bobrow J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1579-82. PubMed ID: 22254624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists.
    Nam HS; Koh S; Kim YJ; Beom J; Lee WH; Lee SU; Kim S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2196-2203. PubMed ID: 28613178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation and Verification of A Novel Wrist Rehabilitation Robot employing Safety-related Mechanism.
    Bae JH; Hwang SJ; Moon I
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():288-293. PubMed ID: 31374644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke.
    Hu XL; Tong KY; Song R; Zheng XJ; Leung WW
    Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of motor functional recovery process in chronic stroke patients during robot-assisted wrist training.
    Hu XL; Tong KY; Song R; Zheng XJ; Lui KH; Leung WW; Ng S; Au-Yeung SS
    J Electromyogr Kinesiol; 2009 Aug; 19(4):639-50. PubMed ID: 18490177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.
    Erwin A; O'Malley MK; Ress D; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot].
    Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy.
    Abdullah HA; Tarry C; Datta R; Mittal GS; Abderrahim M
    J Rehabil Res Dev; 2007; 44(1):43-62. PubMed ID: 17551857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of electro-acupuncture on spasticity of the wrist joint in chronic stroke survivors.
    Mukherjee M; McPeak LK; Redford JB; Sun C; Liu W
    Arch Phys Med Rehabil; 2007 Feb; 88(2):159-66. PubMed ID: 17270512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the ROM of wrist movements in stroke patients by means of a haptic wrist robot.
    Squeri V; Masia L; Taverna L; Morasso P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2077-80. PubMed ID: 22254746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of wrist rehabilitation robot and interface system.
    Yamamoto I; Matsui M; Inagawa N; Hachisuka K; Wada F; Hachisuka A; Saeki S
    Technol Health Care; 2015; 24 Suppl 1():S27-32. PubMed ID: 26409544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of neuromuscular electrical stimulation treatment of cerebral palsy on potential impairment mechanisms: a pilot study.
    Kamper DG; Yasukawa AM; Barrett KM; Gaebler-Spira DJ
    Pediatr Phys Ther; 2006; 18(1):31-8. PubMed ID: 16508532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wrist rehabilitation in chronic stroke patients by means of adaptive, progressive robot-aided therapy.
    Squeri V; Masia L; Giannoni P; Sandini G; Morasso P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):312-25. PubMed ID: 23508271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.