BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2906108)

  • 1. Regional profiles of steady-state levels of cyclic nucleotides, cyclic AMP phosphodiesterase, and guanylate cyclase activities during late stages of unilateral ischemia in gerbil forebrain.
    Palmer GC; Christie-Pope BC; Medina MA; Colombo PM; Palmer SJ
    Metab Brain Dis; 1988 Sep; 3(3):161-77. PubMed ID: 2906108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic nucleotides in stroke and related cerebrovascular disorders.
    Palmer GC
    Life Sci; 1985 May; 36(21):1995-2006. PubMed ID: 2860549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The cyclic nucleotide system in various sections of the dog myocardium in experimental infarction].
    Frolova NIu; Printsev MD; Tret'iakov AV; Kozhetiakin LA; Korovkin BF
    Vopr Med Khim; 1989; 35(1):64-8. PubMed ID: 2568032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional cyclic AMP systems during secondary ischemia in gerbils: influence of anesthetic agents.
    Christie-Pope BC; Palmer GC; Poulakos L; Medina MA; Callahan AS; Palmer SJ
    Exp Neurol; 1984 Jun; 84(3):494-511. PubMed ID: 6327354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-induced differentiation of morphine's effect on cyclic nucleotide metabolism.
    Hoskins B; Ho IK
    Neurobiol Aging; 1987; 8(5):473-6. PubMed ID: 2891056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on cyclic nucleotides in cancer. I. Adenylate guanylate cyclase and protein kinases in the prostatic sarcoma tissue.
    Shima S; Kawashima Y; Hirai M; Kouyama H
    Biochim Biophys Acta; 1976 Sep; 444(2):571-8. PubMed ID: 9148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential alterations of [3H]rolipram and [3H]cyclic adenosine monophosphate binding in the gerbil brain following transient cerebral ischemia.
    Murase K; Kato H; Araki T; Kogure K
    Brain Res; 1993 Feb; 602(2):234-9. PubMed ID: 8383573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic nucleotides and their associated enzymes in 9,10-dimethyl-1,2-benzanthracene-induced mammary tumors of rats.
    Rillema JA; Mulder JA; Anderson LD
    Cancer Res; 1978 Mar; 38(3):741-4. PubMed ID: 23896
    [No Abstract]   [Full Text] [Related]  

  • 9. Cyclic nucleotides and somatomedin action in cartilage.
    Stuart CA; Vesely DL; Provow SA; Furlanetto RW
    Endocrinology; 1982 Aug; 111(2):553-8. PubMed ID: 6124418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on cyclic nucleotide metabolism in Tetrahymena pyriformis: partial characterization of cyclic AMP- and cyclic GMP-dependent phosphodiesterases.
    Kudo S; Nakazawa K; Nozawa Y
    J Protozool; 1980 Aug; 27(3):342-5. PubMed ID: 6109021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic nucleotides and platelet aggregation. Effect of aggregating agents on the activity of cyclic nucleotide-metabolizing enzymes.
    Barber AJ
    Biochim Biophys Acta; 1976 Sep; 444(2):579-95. PubMed ID: 9149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system.
    Kebabian JW
    Adv Cyclic Nucleotide Res; 1977; 8():421-508. PubMed ID: 21551
    [No Abstract]   [Full Text] [Related]  

  • 13. Resolution of soluble cyclic nucleotide phosphodiesterase isoenzymes, from liver and hepatocytes, identifies a novel IBMX-insensitive form.
    Lavan BE; Lakey T; Houslay MD
    Biochem Pharmacol; 1989 Nov; 38(22):4123-36. PubMed ID: 2480793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in [3H]MK-801, [3H]muscimol, [3H]cyclic AMP, and [3H]rolipram binding in the gerbil hippocampus following repeated ischemic insults.
    Kato H; Araki T; Murase K; Kogure K
    Neuroscience; 1993 Jan; 52(2):245-53. PubMed ID: 8383818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic nucleotide metabolism in the mouse spleen after treatment with tilorone hydrochloride.
    Römer W; Zschiesche W
    Acta Biol Med Ger; 1979; 38(5-6):791-4. PubMed ID: 43058
    [No Abstract]   [Full Text] [Related]  

  • 16. Ontogenetic changes in adenylate cyclase, cyclic AMP phosphodiesterase and calmodulin in chick ventricular myocardium.
    Epstein PM; Andrenyak DM; Smith CJ; Pappano AJ
    Biochem J; 1987 Apr; 243(2):525-31. PubMed ID: 2820384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The effect of bilateral ischemia on energy metabolites and cyclic nucleotides in cerebral cortex of the Mongolian gerbil (author's transl)].
    Kobayashi M
    Neurol Med Chir (Tokyo); 1978 Jan; 18(1):21-8. PubMed ID: 75518
    [No Abstract]   [Full Text] [Related]  

  • 18. Calmodulin sensitive phosphodiesterase of porcine cerebral cortex: kinetic behavior, calmodulin activation, and stability.
    Keravis TM; Duemler BH; Wells JN
    J Cyclic Nucleotide Protein Phosphor Res; 1986; 11(5):365-72. PubMed ID: 3040819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the soluble cyclic nucleotide phosphodiesterases in Xenopus laevis oocytes. Evidence for a calmodulin-dependent enzyme.
    Miot F; Erneux C
    Biochim Biophys Acta; 1982 Feb; 701(2):253-9. PubMed ID: 6280770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cyclic AMP and cyclic GMP in Morris hepatomas and liver.
    Hickie RA
    Adv Exp Med Biol; 1977 May 22-24; 92():451-88. PubMed ID: 24988
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.