These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29061387)

  • 1. Adaptive coordination of working-memory and reinforcement learning in non-human primates performing a trial-and-error problem solving task.
    Viejo G; Girard B; Procyk E; Khamassi M
    Behav Brain Res; 2018 Dec; 355():76-89. PubMed ID: 29061387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions Among Working Memory, Reinforcement Learning, and Effort in Value-Based Choice: A New Paradigm and Selective Deficits in Schizophrenia.
    Collins AGE; Albrecht MA; Waltz JA; Gold JM; Frank MJ
    Biol Psychiatry; 2017 Sep; 82(6):431-439. PubMed ID: 28651789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Working Memory Load Strengthens Reward Prediction Errors.
    Collins AGE; Ciullo B; Frank MJ; Badre D
    J Neurosci; 2017 Apr; 37(16):4332-4342. PubMed ID: 28320846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory.
    Collins AGE; Frank MJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2502-2507. PubMed ID: 29463751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of autonomous problem solving process by dynamic construction of task models in multiple tasks environment.
    Ohigashi Y; Omori T
    Neural Netw; 2006 Oct; 19(8):1169-80. PubMed ID: 16989982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural Index of Reinforcement Learning Predicts Improved Stimulus-Response Retention under High Working Memory Load.
    Rac-Lubashevsky R; Cremer A; Collins AGE; Frank MJ; Schwabe L
    J Neurosci; 2023 Apr; 43(17):3131-3143. PubMed ID: 36931706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How much of reinforcement learning is working memory, not reinforcement learning? A behavioral, computational, and neurogenetic analysis.
    Collins AG; Frank MJ
    Eur J Neurosci; 2012 Apr; 35(7):1024-35. PubMed ID: 22487033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Working memory contributions to reinforcement learning impairments in schizophrenia.
    Collins AG; Brown JK; Gold JM; Waltz JA; Frank MJ
    J Neurosci; 2014 Oct; 34(41):13747-56. PubMed ID: 25297101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relevance of working memory for reinforcement learning in older adults varies with timescale of learning.
    van de Vijver I; Ligneul R
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2020 Sep; 27(5):654-676. PubMed ID: 31544587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.
    Zendehrouh S
    Neural Netw; 2015 Nov; 71():112-23. PubMed ID: 26339919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.
    Khamassi M; Enel P; Dominey PF; Procyk E
    Prog Brain Res; 2013; 202():441-64. PubMed ID: 23317844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement learning and human behavior.
    Shteingart H; Loewenstein Y
    Curr Opin Neurobiol; 2014 Apr; 25():93-8. PubMed ID: 24709606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From poor performance to success under stress: working memory, strategy selection, and mathematical problem solving under pressure.
    Beilock SL; Decaro MS
    J Exp Psychol Learn Mem Cogn; 2007 Nov; 33(6):983-98. PubMed ID: 17983308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The drift diffusion model as the choice rule in reinforcement learning.
    Pedersen ML; Frank MJ; Biele G
    Psychon Bull Rev; 2017 Aug; 24(4):1234-1251. PubMed ID: 27966103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distentangling the systems contributing to changes in learning during adolescence.
    Master SL; Eckstein MK; Gotlieb N; Dahl R; Wilbrecht L; Collins AGE
    Dev Cogn Neurosci; 2020 Feb; 41():100732. PubMed ID: 31826837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the influence of working memory, reinforcement, and action uncertainty on reaction time and choice during instrumental learning.
    McDougle SD; Collins AGE
    Psychon Bull Rev; 2021 Feb; 28(1):20-39. PubMed ID: 32710256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Episodic memory governs choices: An RNN-based reinforcement learning model for decision-making task.
    Zhang X; Liu L; Long G; Jiang J; Liu S
    Neural Netw; 2021 Feb; 134():1-10. PubMed ID: 33276194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related differences in prefrontal glutamate are associated with increased working memory decay that gives the appearance of learning deficits.
    Rmus M; He M; Baribault B; Walsh EG; Festa EK; Collins AGE; Nassar MR
    Elife; 2023 Apr; 12():. PubMed ID: 37070807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving.
    Maisto D; Donnarumma F; Pezzulo G
    J R Soc Interface; 2015 Mar; 12(104):20141335. PubMed ID: 25652466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Tortoise and the Hare: Interactions between Reinforcement Learning and Working Memory.
    Collins AGE
    J Cogn Neurosci; 2018 Oct; 30(10):1422-1432. PubMed ID: 29346018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.