BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29061459)

  • 1. Spaceflight and Neurosurgery: A Comprehensive Review of the Relevant Literature.
    Swinney CC; Allison Z
    World Neurosurg; 2018 Jan; 109():444-448. PubMed ID: 29061459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurosurgery and spinal adaptations in spaceflight: A literature review.
    Lazzari ZT; Aria KM; Menger R
    Clin Neurol Neurosurg; 2021 Aug; 207():106755. PubMed ID: 34126454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual changes after space flight: is it really caused by increased intracranial tension? A systematic review.
    Elwy R; Soliman MA; Hasanain AA; Ezzat AA; Elbaroody M; Alsawy MF; El Refaee E
    J Neurosurg Sci; 2020 Oct; 64(5):468-479. PubMed ID: 32347675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurosurgery and Manned Spaceflight.
    Panesar SS; Fernandez-Miranda JC; Kliot M; Ashkan K
    Neurosurgery; 2020 Mar; 86(3):317-324. PubMed ID: 30407580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neurology of space flight; How does space flight effect the human nervous system?
    Gupta U; Baig S; Majid A; Bell SM
    Life Sci Space Res (Amst); 2023 Feb; 36():105-115. PubMed ID: 36682819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonhuman primate models in the study of spaceflight stressors: Past contributions and future directions.
    Desai RI; Kangas BD; Limoli CL
    Life Sci Space Res (Amst); 2021 Aug; 30():9-23. PubMed ID: 34281669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing intracranial pressure by reducing central venous pressure: assessment of potential countermeasures to spaceflight-associated neuro-ocular syndrome.
    Hansen AB; Lawley JS; Rickards CA; Howden EJ; Sarma S; Cornwell WK; Amin SB; Mugele H; Marume K; Possnig C; Whitworth LA; Williams MA; Levine BD
    J Appl Physiol (1985); 2021 Feb; 130(2):283-289. PubMed ID: 33270516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of spaceflight on cartilage: implications on spinal physiology.
    Ramachandran V; Wang R; Ramachandran SS; Ahmed AS; Phan K; Antonsen EL
    J Spine Surg; 2018 Jun; 4(2):433-445. PubMed ID: 30069539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spaceflight induced changes in the human proteome.
    Kononikhin AS; Starodubtseva NL; Pastushkova LK; Kashirina DN; Fedorchenko KY; Brhozovsky AG; Popov IA; Larina IM; Nikolaev EN
    Expert Rev Proteomics; 2017 Jan; 14(1):15-29. PubMed ID: 27817217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain Physiological Response and Adaptation During Spaceflight.
    Marshall-Goebel K; Damani R; Bershad EM
    Neurosurgery; 2019 Nov; 85(5):E815-E821. PubMed ID: 31215633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of ocular hemodynamics and intracranial pressure on intraocular pressure during acute gravitational changes.
    Nelson ES; Mulugeta L; Feola A; Raykin J; Myers JG; Samuels BC; Ethier CR
    J Appl Physiol (1985); 2017 Aug; 123(2):352-363. PubMed ID: 28495842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk of herniated nucleus pulposus among U.S. astronauts.
    Johnston SL; Campbell MR; Scheuring R; Feiveson AH
    Aviat Space Environ Med; 2010 Jun; 81(6):566-74. PubMed ID: 20540448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurocognitive assessment in microgravity: review of tools and benefits of increasing their clinical validity for long duration missions.
    De la Torre GG; Gonzalez-Torre S
    J Clin Exp Neuropsychol; 2023 May; 45(3):270-291. PubMed ID: 37357681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time Ultrasound Assessment of Astronaut Spinal Anatomy and Disorders on the International Space Station.
    Garcia KM; Harrison MF; Sargsyan AE; Ebert D; Dulchavsky SA
    J Ultrasound Med; 2018 Apr; 37(4):987-999. PubMed ID: 28960477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of microgravity on the biomechanical properties of lumbar and caudal intervertebral discs in mice.
    Bailey JF; Hargens AR; Cheng KK; Lotz JC
    J Biomech; 2014 Sep; 47(12):2983-8. PubMed ID: 25085756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of microgravity on the human venous system and blood coagulation: a systematic review.
    Kim DS; Vaquer S; Mazzolai L; Roberts LN; Pavela J; Watanabe M; Weerts G; Green DA
    Exp Physiol; 2021 May; 106(5):1149-1158. PubMed ID: 33704837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The function of the autonomic nervous system during spaceflight.
    Mandsager KT; Robertson D; Diedrich A
    Clin Auton Res; 2015 Jun; 25(3):141-51. PubMed ID: 25820827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures.
    Zhang LF; Hargens AR
    Physiol Rev; 2018 Jan; 98(1):59-87. PubMed ID: 29167331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Invited review: gender issues related to spaceflight: a NASA perspective.
    Harm DL; Jennings RT; Meck JV; Powell MR; Putcha L; Sams CP; Schneider SM; Shackelford LC; Smith SM; Whitson PA
    J Appl Physiol (1985); 2001 Nov; 91(5):2374-83. PubMed ID: 11641383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.