BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29061687)

  • 1. Environmental effects on
    Wang X; Amei A; de Belle JS; Roberts SP
    J Exp Biol; 2018 Jan; 221(Pt 1):. PubMed ID: 29061687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila.
    Masuda-Nakagawa LM; Ito K; Awasaki T; O'Kane CJ
    Front Neural Circuits; 2014; 8():35. PubMed ID: 24782716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.
    Huser A; Rohwedder A; Apostolopoulou AA; Widmann A; Pfitzenmaier JE; Maiolo EM; Selcho M; Pauls D; von Essen A; Gupta T; Sprecher SG; Birman S; Riemensperger T; Stocker RF; Thum AS
    PLoS One; 2012; 7(10):e47518. PubMed ID: 23082175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal disruption of mushroom body development and odor learning in Drosophila.
    Wang X; Green DS; Roberts SP; de Belle JS
    PLoS One; 2007 Nov; 2(11):e1125. PubMed ID: 17992254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized olfactory representation in mushroom bodies of Drosophila larvae.
    Masuda-Nakagawa LM; Gendre N; O'Kane CJ; Stocker RF
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10314-9. PubMed ID: 19502424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interruptive effect of electric shock on odor response requires mushroom bodies in Drosophila melanogaster.
    Song W; Zhao L; Tao Y; Guo X; Jia J; He L; Huang Y; Zhu Y; Chen P; Qin H
    Genes Brain Behav; 2019 Feb; 18(2):e12488. PubMed ID: 29808570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast.
    Lee T; Lee A; Luo L
    Development; 1999 Sep; 126(18):4065-76. PubMed ID: 10457015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embryonic and larval development of the Drosophila mushroom bodies: concentric layer subdivisions and the role of fasciclin II.
    Kurusu M; Awasaki T; Masuda-Nakagawa LM; Kawauchi H; Ito K; Furukubo-Tokunaga K
    Development; 2002 Jan; 129(2):409-19. PubMed ID: 11807033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of increased larval competitive ability in Drosophila melanogaster without increased larval feeding rate.
    Sarangi M; Nagarajan A; Dey S; Bose J; Joshi A
    J Genet; 2016 Sep; 95(3):491-503. PubMed ID: 27659320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.
    Huser A; Eschment M; Güllü N; Collins KAN; Böpple K; Pankevych L; Rolsing E; Thum AS
    PLoS One; 2017; 12(8):e0181865. PubMed ID: 28777821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormesis-like effect of mild larval crowding on thermotolerance in
    Henry Y; Renault D; Colinet H
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29191860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olfactory information processing in Drosophila.
    Masse NY; Turner GC; Jefferis GS
    Curr Biol; 2009 Aug; 19(16):R700-13. PubMed ID: 19706282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation to larval crowding in Drosophila ananassae and Drosophila nasuta nasuta: increased larval competitive ability without increased larval feeding rate.
    Nagarajan A; Natarajan SB; Jayaram M; Thammanna A; Chari S; Bose J; Jois SV; Joshi A
    J Genet; 2016 Jun; 95(2):411-25. PubMed ID: 27350686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of dopamine in Drosophila larval classical olfactory conditioning.
    Selcho M; Pauls D; Han KA; Stocker RF; Thum AS
    PLoS One; 2009 Jun; 4(6):e5897. PubMed ID: 19521527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging behavior and physiology: ion-channel perspective on mushroom body-dependent olfactory learning and memory in Drosophila.
    Gasque G; Labarca P; Delgado R; Darszon A
    J Cell Physiol; 2006 Dec; 209(3):1046-53. PubMed ID: 16924658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons.
    Python F; Stocker RF
    J Comp Neurol; 2002 Apr; 445(4):374-87. PubMed ID: 11920714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metamorphosis of memory circuits in
    Truman JW; Price J; Miyares RL; Lee T
    Elife; 2023 Jan; 12():. PubMed ID: 36695420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Odor-taste learning in Drosophila larvae.
    Widmann A; Eichler K; Selcho M; Thum AS; Pauls D
    J Insect Physiol; 2018 Apr; 106(Pt 1):47-54. PubMed ID: 28823531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neuro-ecology of Drosophila pupation behavior.
    Del Pino F; Jara C; Pino L; Godoy-Herrera R
    PLoS One; 2014; 9(7):e102159. PubMed ID: 25033294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit.
    Ramaekers A; Magnenat E; Marin EC; Gendre N; Jefferis GS; Luo L; Stocker RF
    Curr Biol; 2005 Jun; 15(11):982-92. PubMed ID: 15936268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.