These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 29061849)
1. The small molecule luteolin inhibits Liu F; Xu K; Xu Z; de Las Rivas M; Wang C; Li X; Lu J; Zhou Y; Delso I; Merino P; Hurtado-Guerrero R; Zhang Y; Wu F J Biol Chem; 2017 Dec; 292(52):21304-21319. PubMed ID: 29061849 [TBL] [Abstract][Full Text] [Related]
2. Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10), involved in mucin-type O-glycosylation, has a unique GalNAc-O-Ser/Thr-binding site in its catalytic domain not found in ppGalNAc T1 or T2. Perrine CL; Ganguli A; Wu P; Bertozzi CR; Fritz TA; Raman J; Tabak LA; Gerken TA J Biol Chem; 2009 Jul; 284(30):20387-97. PubMed ID: 19460755 [TBL] [Abstract][Full Text] [Related]
3. Role of peptide sequence and neighboring residue glycosylation on the substrate specificity of the uridine 5'-diphosphate-alpha-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyl transferases T1 and T2: kinetic modeling of the porcine and canine submaxillary gland mucin tandem repeats. Gerken TA; Tep C; Rarick J Biochemistry; 2004 Aug; 43(30):9888-900. PubMed ID: 15274643 [TBL] [Abstract][Full Text] [Related]
4. A simple bacterial expression system for human ppGalNAc-T and used for the synthesis of O-GalNAc glycosylated interleukin 2. Liang T; Xu Z; Jia W; Zhang H; Yang F; Zou X; Zhang Y Biochem Biophys Res Commun; 2020 Aug; 529(1):57-63. PubMed ID: 32560819 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of polypeptide N-acetyl-α-galactosaminyltransferases is an underlying mechanism of dietary polyphenols preventing colorectal tumorigenesis. Liu F; Cui Y; Yang F; Xu Z; Da LT; Zhang Y Bioorg Med Chem; 2019 Aug; 27(15):3372-3382. PubMed ID: 31227364 [TBL] [Abstract][Full Text] [Related]
6. The lectin domain of the polypeptide GalNAc transferase family of glycosyltransferases (ppGalNAc Ts) acts as a switch directing glycopeptide substrate glycosylation in an N- or C-terminal direction, further controlling mucin type O-glycosylation. Gerken TA; Revoredo L; Thome JJ; Tabak LA; Vester-Christensen MB; Clausen H; Gahlay GK; Jarvis DL; Johnson RW; Moniz HA; Moremen K J Biol Chem; 2013 Jul; 288(27):19900-14. PubMed ID: 23689369 [TBL] [Abstract][Full Text] [Related]
7. Identification of common and unique peptide substrate preferences for the UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases T1 and T2 derived from oriented random peptide substrates. Gerken TA; Raman J; Fritz TA; Jamison O J Biol Chem; 2006 Oct; 281(43):32403-16. PubMed ID: 16912039 [TBL] [Abstract][Full Text] [Related]
8. Characterization of ppGalNAc-T18, a member of the vertebrate-specific Y subfamily of UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases. Li X; Wang J; Li W; Xu Y; Shao D; Xie Y; Xie W; Kubota T; Narimatsu H; Zhang Y Glycobiology; 2012 May; 22(5):602-15. PubMed ID: 22171061 [TBL] [Abstract][Full Text] [Related]
9. Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. Gerken TA; Jamison O; Perrine CL; Collette JC; Moinova H; Ravi L; Markowitz SD; Shen W; Patel H; Tabak LA J Biol Chem; 2011 Apr; 286(16):14493-507. PubMed ID: 21349845 [TBL] [Abstract][Full Text] [Related]
10. Making Home Sweet and Sturdy: Toxoplasma gondii ppGalNAc-Ts Glycosylate in Hierarchical Order and Confer Cyst Wall Rigidity. Tomita T; Sugi T; Yakubu R; Tu V; Ma Y; Weiss LM mBio; 2017 Jan; 8(1):. PubMed ID: 28074022 [TBL] [Abstract][Full Text] [Related]
11. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Revoredo L; Wang S; Bennett EP; Clausen H; Moremen KW; Jarvis DL; Ten Hagen KG; Tabak LA; Gerken TA Glycobiology; 2016 Apr; 26(4):360-76. PubMed ID: 26610890 [TBL] [Abstract][Full Text] [Related]
12. Systematic identification of the protein substrates of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase-T1/T2/T3 using a human proteome microarray. Xu Z; Li X; Zhou S; Xie W; Wang J; Cheng L; Wang S; Guo S; Xu Z; Cao X; Zhang M; Yu B; Narimatsu H; Tao SC; Zhang Y Proteomics; 2017 Jun; 17(11):. PubMed ID: 28394504 [TBL] [Abstract][Full Text] [Related]
13. Polypeptide N-acetylgalactosaminyltransferase 18 non-catalytically regulates the ER homeostasis and O-glycosylation. Shan A; Lu J; Xu Z; Li X; Xu Y; Li W; Liu F; Yang F; Sato T; Narimatsu H; Zhang Y Biochim Biophys Acta Gen Subj; 2019 May; 1863(5):870-882. PubMed ID: 30797803 [TBL] [Abstract][Full Text] [Related]
14. O-glycosylation in Toxoplasma gondii: identification and analysis of a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Stwora-Wojczyk MM; Kissinger JC; Spitalnik SL; Wojczyk BS Int J Parasitol; 2004 Mar; 34(3):309-22. PubMed ID: 15003492 [TBL] [Abstract][Full Text] [Related]
15. Polypeptide N-Acetylgalactosaminyltransferase 13 Contributes to Neurogenesis via Stabilizing the Mucin-type O-Glycoprotein Podoplanin. Xu Y; Pang W; Lu J; Shan A; Zhang Y J Biol Chem; 2016 Nov; 291(45):23477-23488. PubMed ID: 27629416 [TBL] [Abstract][Full Text] [Related]
16. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Brockhausen I; Toki D; Brockhausen J; Peters S; Bielfeldt T; Kleen A; Paulsen H; Meldal M; Hagen F; Tabak LA Glycoconj J; 1996 Oct; 13(5):849-56. PubMed ID: 8910012 [TBL] [Abstract][Full Text] [Related]
17. An acetylation site in lectin domain modulates the biological activity of polypeptide GalNAc-transferase-2. Zlocowski N; Lorenz V; Bennett EP; Clausen H; Nores GA; Irazoqui FJ Biol Chem; 2013 Jan; 394(1):69-77. PubMed ID: 23096348 [TBL] [Abstract][Full Text] [Related]
18. Mucin core O-glycosylation is modulated by neighboring residue glycosylation status. Kinetic modeling of the site-specific glycosylation of the apo-porcine submaxillary mucin tandem repeat by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases T1 and T2. Gerken TA; Zhang J; Levine J; Elhammer A J Biol Chem; 2002 Dec; 277(51):49850-62. PubMed ID: 12397077 [TBL] [Abstract][Full Text] [Related]
19. Site-specific glycosylation of Ebola virus glycoprotein by human polypeptide GalNAc-transferase 1 induces cell adhesion defects. Simon EJ; Linstedt AD J Biol Chem; 2018 Dec; 293(51):19866-19873. PubMed ID: 30389789 [TBL] [Abstract][Full Text] [Related]
20. O-glycosylation of SARS-CoV-2 spike protein by host O-glycosyltransferase strengthens its trimeric structure. Xu Z; Zhang H; Tian J; Ku X; Wei R; Hou J; Zhang C; Yang F; Zou X; Li Y; Kaji H; Tao SC; Kuno A; Yan W; Da LT; Zhang Y Acta Biochim Biophys Sin (Shanghai); 2024 Jul; 56(8):1118-1129. PubMed ID: 39066577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]