These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29062011)

  • 1. Improved emission of SiV diamond color centers embedded into concave plasmonic core-shell nanoresonators.
    Szenes A; Bánhelyi B; Szabó LZ; Szabó G; Csendes T; Csete M
    Sci Rep; 2017 Oct; 7(1):13845. PubMed ID: 29062011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonically Enhanced Superradiance of Broken-Symmetry Diamond Color Center Arrays Inside Core-Shell Nanoresonators.
    Vass D; Szenes A; Bánhelyi B; Csete M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superradiant diamond color center arrays coupled to concave plasmonic nanoresonators.
    Vass D; Szenes A; Bánhelyi B; Csendes T; Szabó G; Csete M
    Opt Express; 2019 Oct; 27(22):31176-31192. PubMed ID: 31684358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Diamond Color Center Fluorescence via Optimized Configurations of Plasmonic Core-Shell Nanoresonator Dimers.
    Szenes A; Vass DI; Bánhelyi B; Csete M
    ACS Omega; 2023 Nov; 8(44):41356-41362. PubMed ID: 37970031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Dielectric Nanopillar Antenna-Resonators for Efficient Collected Photon Rate from Silicon Carbide Color Centers.
    Inam FA; Castelletto S
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Individual Nanoresonators Optimized for Lasing and Spasing Operation.
    Szenes A; Vass D; Bánhelyi B; Csete M
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ag-Diamond Core-Shell Nanostructures Incorporated with Silicon-Vacancy Centers.
    Li S; Francaviglia L; Kohler DD; Jones ZR; Zhao ET; Ogletree DF; Weber-Bargioni A; Melosh NA; Hamers RJ
    ACS Mater Au; 2022 Mar; 2(2):85-93. PubMed ID: 36855764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast spontaneous emission source using plasmonic nanoantennas.
    Hoang TB; Akselrod GM; Argyropoulos C; Huang J; Smith DR; Mikkelsen MH
    Nat Commun; 2015 Jul; 6():7788. PubMed ID: 26212857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solitary Oxygen Dopant Emission from Carbon Nanotubes Modified by Dielectric Metasurfaces.
    Ma X; James AR; Hartmann NF; Baldwin JK; Dominguez J; Sinclair MB; Luk TS; Wolf O; Liu S; Doorn SK; Htoon H; Brener I
    ACS Nano; 2017 Jun; 11(6):6431-6439. PubMed ID: 28535349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs.
    Ondič L; Varga M; Hruška K; Fait J; Kapusta P
    ACS Nano; 2017 Mar; 11(3):2972-2981. PubMed ID: 28238257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photophysics of single silicon vacancy centers in diamond: implications for single photon emission.
    Neu E; Agio M; Becher C
    Opt Express; 2012 Aug; 20(18):19956-71. PubMed ID: 23037048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional Core/Shell Diamond Nanoparticles Combining Unique Thermal and Light Properties for Future Biological Applications.
    Grudinkin SA; Bogdanov KV; Tolmachev VA; Baranov MA; Kaliya IE; Golubev VG; Baranov AV
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission.
    Siampour H; Kumar S; Bozhevolnyi SI
    Nanoscale; 2017 Nov; 9(45):17902-17908. PubMed ID: 29119986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of radiative processes using tunable plasmonic nanopatch antennas.
    Rose A; Hoang TB; McGuire F; Mock JJ; Ciracì C; Smith DR; Mikkelsen MH
    Nano Lett; 2014 Aug; 14(8):4797-802. PubMed ID: 25020029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mie resonance-enhanced pumping and detection efficiency for shallow nitrogen-vacancy centers in diamond.
    Hong HG; Lee SB; Heo MS; Park SE; Kwon TY
    Opt Express; 2016 Dec; 24(25):28815-28828. PubMed ID: 27958525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmon-enhanced fluorescence of submonolayer porphyrins by silver-polymer core-shell nanoparticles.
    Niu JX; Pan CD; Liu YT; Lou ST; Wu E; Wu BT; Zhang XL; Jin QY
    Opt Express; 2018 Feb; 26(3):3489-3496. PubMed ID: 29401876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multipolar-sensitive engineering of magnetic dipole spontaneous emission with a dielectric nanoresonator antenna.
    Habil MK; Zapata-Rodríguez CJ; Cuevas M; Entezar SR
    Sci Rep; 2021 Jun; 11(1):12813. PubMed ID: 34140616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond.
    Huang D; Abulnaga A; Welinski S; Raha M; Thompson JD; de Leon NP
    Opt Express; 2021 Mar; 29(6):9174-9189. PubMed ID: 33820350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum Interference of Resonance Fluorescence from Germanium-Vacancy Color Centers in Diamond.
    Chen D; Fröch JE; Ru S; Cai H; Wang N; Adamo G; Scott J; Li F; Zheludev N; Aharonovich I; Gao W
    Nano Lett; 2022 Aug; 22(15):6306-6312. PubMed ID: 35913802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-dielectric antennas for efficient photon collection from diamond color centers.
    Karamlou A; Trusheim ME; Englund D
    Opt Express; 2018 Feb; 26(3):3341-3352. PubMed ID: 29401863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.