These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29062430)

  • 1. Preactivation-based chemoselective glycosylations: A powerful strategy for oligosaccharide assembly.
    Yang W; Yang B; Ramadan S; Huang X
    Beilstein J Org Chem; 2017; 13():2094-2114. PubMed ID: 29062430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Donor Preactivation-Based Glycan Assembly: from Manual to Automated Synthesis.
    Yao W; Ye XS
    Acc Chem Res; 2024 Jun; 57(11):1577-1594. PubMed ID: 38623919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ortho-Methylphenylthioglycosides as glycosyl building blocks for preactivation-based oligosaccharide synthesis.
    Peng P; Xiong DC; Ye XS
    Carbohydr Res; 2014 Jan; 384():1-8. PubMed ID: 24334234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Installation of electron-donating protective groups, a strategy for glycosylating unreactive thioglycosyl acceptors using the preactivation-based glycosylation method.
    Zeng Y; Wang Z; Whitfield D; Huang X
    J Org Chem; 2008 Oct; 73(20):7952-62. PubMed ID: 18808187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-component one-pot synthesis of the tumor-associated carbohydrate antigen Globo-H based on preactivation of thioglycosyl donors.
    Wang Z; Zhou L; El-Boubbou K; Ye XS; Huang X
    J Org Chem; 2007 Aug; 72(17):6409-20. PubMed ID: 17658849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syntheses of Lewis(x) and dimeric Lewis(x): construction of branched oligosaccharides by a combination of preactivation and reactivity based chemoselective one-pot glycosylations.
    Miermont A; Zeng Y; Jing Y; Ye XS; Huang X
    J Org Chem; 2007 Nov; 72(23):8958-61. PubMed ID: 17939723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-activation Based Stereoselective Glycosylations.
    Yang B; Yang W; Ramadan S; Huang X
    European J Org Chem; 2018 Mar; 2018(9):1075-1096. PubMed ID: 29805297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aglycon reactivity as a guiding principle in latent-active approach to chemical glycosylations.
    Das A; Jayaraman N
    Carbohydr Res; 2021 Oct; 508():108404. PubMed ID: 34352649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preactivation-based, one-pot combinatorial synthesis of heparin-like hexasaccharides for the analysis of heparin-protein interactions.
    Wang Z; Xu Y; Yang B; Tiruchinapally G; Sun B; Liu R; Dulaney S; Liu J; Huang X
    Chemistry; 2010 Jul; 16(28):8365-75. PubMed ID: 20623566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligosaccharide synthesis with glycosyl phosphate and dithiophosphate triesters as glycosylating agents.
    Plante OJ; Palmacci ER; Andrade RB; Seeberger PH
    J Am Chem Soc; 2001 Oct; 123(39):9545-54. PubMed ID: 11572674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective assembly of complex oligosaccharides using anomeric sulfonium ions as glycosyl donors.
    Fang T; Mo KF; Boons GJ
    J Am Chem Soc; 2012 May; 134(17):7545-52. PubMed ID: 22475263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Venturing beyond Donor-Controlled Glycosylation: New Perspectives toward Anomeric Selectivity.
    Leng WL; Yao H; He JX; Liu XW
    Acc Chem Res; 2018 Mar; 51(3):628-639. PubMed ID: 29469568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages.
    Hu Y; Yu K; Shi LL; Liu L; Sui JJ; Liu DY; Xiong B; Sun JS
    J Am Chem Soc; 2017 Sep; 139(36):12736-12744. PubMed ID: 28835100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel strategy for oligosaccharide synthesis via temporarily deactivated S-thiazolyl glycosides as glycosyl acceptors.
    Pornsuriyasak P; Gangadharmath UB; Rath NP; Demchenko AV
    Org Lett; 2004 Nov; 6(24):4515-8. PubMed ID: 15548064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in stereoselective 1,2-
    Ishiwata A; Tanaka K; Ao J; Ding F; Ito Y
    Front Chem; 2022; 10():972429. PubMed ID: 36059876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Arabinoxylan Oligosaccharides by Preactivation-Based Iterative Glycosylations.
    Underlin EN; Böhm M; Madsen R
    J Org Chem; 2019 Dec; 84(24):16036-16054. PubMed ID: 31762276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of a Complex Branched Oligosaccharide by Combining Fluorous-Supported Synthesis and Stereoselective Glycosylations using Anomeric Sulfonium Ions.
    Huang W; Gao Q; Boons GJ
    Chemistry; 2015 Sep; 21(37):12920-6. PubMed ID: 26250358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel 1,2-cis-stereoselective glycosylations utilizing organoboron reagents and their application to natural products and complex oligosaccharide synthesis.
    Takahashi D; Tanaka M; Nishi N; Toshima K
    Carbohydr Res; 2017 Nov; 452():64-77. PubMed ID: 29080430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the superarmed glycosyl donor to chemoselective oligosaccharide synthesis.
    Mydock LK; Demchenko AV
    Org Lett; 2008 Jun; 10(11):2107-10. PubMed ID: 18447362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold(I)-Catalyzed Glycosylation with Glycosyl o-Alkynylbenzoates as Donors.
    Yu B
    Acc Chem Res; 2018 Feb; 51(2):507-516. PubMed ID: 29297680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.