These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 29062851)
21. Characterization of a cry4Ba-type gene of Bacillus thuringiensis israelensis and evidence of the synergistic larvicidal activity of its encoded protein with Cry2A delta-endotoxin of B. thuringiensis kurstaki on Culex pipiens (common house mosquito). Zghal RZ; Tounsi S; Jaoua S Biotechnol Appl Biochem; 2006 Apr; 44(Pt 1):19-25. PubMed ID: 16309381 [TBL] [Abstract][Full Text] [Related]
22. Larvicidal potential, antimicrobial properties and molecular docking analysis of Egyptian Mint (Mentha rotundifolia) against Culex pipiens L. (Diptera: Culicidae) and Midgut-borne Staphylococcus aureus. Abu-Hussien SH; Hemdan B; Abd-Elhalim BT; Aboul Fotouh MM; Soliman AG; Ghallab YK; Adly E; El-Sayed SM Sci Rep; 2024 Jan; 14(1):1697. PubMed ID: 38242905 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of Bacillus thuringiensis Subsp. Israelensis and Bacillus sphaericus Combination Against Culex pipiens in Highly Vegetated Ditches. Virgillito C; Manica M; Marini G; Rosà R; Della Torre A; Martini S; Drago A; Baseggio A; Caputo B J Am Mosq Control Assoc; 2022 Mar; 38(1):40-45. PubMed ID: 35276728 [TBL] [Abstract][Full Text] [Related]
24. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. Yooyangket T; Muangpat P; Polseela R; Tandhavanant S; Thanwisai A; Vitta A PLoS One; 2018; 13(4):e0195681. PubMed ID: 29641570 [TBL] [Abstract][Full Text] [Related]
25. Occurrence of Bacillus thuringiensis in fresh waters of Japan. Ichimatsu T; Mizuki E; Nishimura K; Akao T; Saitoh H; Higuchi K; Ohba M Curr Microbiol; 2000 Apr; 40(4):217-20. PubMed ID: 10688688 [TBL] [Abstract][Full Text] [Related]
26. Residual activity of Bacillus thuringiensis serovars medellin and jegathesan on Culex pipiens and Aedes aegypti larvae. Thiéry I; Fouque F; Gaven B; Lagneau C J Am Mosq Control Assoc; 1999 Sep; 15(3):371-9. PubMed ID: 10480130 [TBL] [Abstract][Full Text] [Related]
27. [Larvicidal activity of recombinant Escherichia coli expressing scorpion neurotoxin AaIT or B.t.i toxin Cyt2Ba against mosquito larvae and formulations for enhancing the effects]. Deng SQ; Deng MZ; Chen JT; Zheng LL; Peng HJ Nan Fang Yi Ke Da Xue Xue Bao; 2017 Jun; 37(6):750-754. PubMed ID: 28669947 [TBL] [Abstract][Full Text] [Related]
28. Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Wirth MC; Walton WE; Federici BA Environ Microbiol; 2010 May; 12(5):1154-60. PubMed ID: 20141526 [TBL] [Abstract][Full Text] [Related]
29. New native Bacillus thuringiensis strains induce high insecticidal action against Culex pipiens pallens larvae and adults. Ma X; Hu J; Ding C; Portieles R; Xu H; Gao J; Du L; Gao X; Yue Q; Zhao L; Borrás-Hidalgo O BMC Microbiol; 2023 Apr; 23(1):100. PubMed ID: 37055727 [TBL] [Abstract][Full Text] [Related]
30. Activity of free and clay-bound insecticidal proteins from Bacillus thuringiensis subsp. israelensis against the mosquito Culex pipiens. Lee L; Saxena D; Stotzky G Appl Environ Microbiol; 2003 Jul; 69(7):4111-5. PubMed ID: 12839788 [TBL] [Abstract][Full Text] [Related]
31. The utilization of bacilli as larvicidal agents against anopheline and culicine mosquitoes in Turkey. I. Larvicidal activity of Bacillus thuringiensis serotype H-14. Matur A; Ceber K J Trop Med Hyg; 1988 Oct; 91(5):229-30. PubMed ID: 3184242 [TBL] [Abstract][Full Text] [Related]
32. Isolation of Bacillus thuringiensis from intertidal brackish sediments in mangroves. Maeda M; Mizuki E; Hara M; Tanaka R; Akao T; Yamashita S; Ohba M Microbiol Res; 2001; 156(2):195-8. PubMed ID: 11572461 [TBL] [Abstract][Full Text] [Related]
33. [Experimental observation of toxic effect of Bacillus thuringiensis var. israelensis against Aedes, Culex and Anopheles larvae]. Li JL; Zhu GD; Zhou HY; Tang JX; Cao J Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2014 Feb; 26(1):67-8. PubMed ID: 24800571 [TBL] [Abstract][Full Text] [Related]
34. Antibacteriophage action on the larvicidal activity of Bacillus thuringiensis H-14 and Bacillus sphaericus against Culex pipiens. Rady MH; Saleh MB; Merdan AI J Egypt Public Health Assoc; 1990; 65(3-4):319-34. PubMed ID: 2133905 [TBL] [Abstract][Full Text] [Related]
35. Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say (Diptera: Culicidae). Kovendan K; Murugan K; Vincent S; Kamalakannan S Parasitol Res; 2011 Nov; 109(5):1251-7. PubMed ID: 21537989 [TBL] [Abstract][Full Text] [Related]
36. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Muthukumaran U; Govindarajan M; Rajeswary M Parasitol Res; 2015 Mar; 114(3):989-99. PubMed ID: 25544703 [TBL] [Abstract][Full Text] [Related]