BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29063191)

  • 1. Analysis of a purely conductance-based stochastic nerve fibre model as applied to compound models of populations of human auditory nerve fibres used in cochlear implant simulations.
    Badenhorst W; Hanekom T; Hanekom JJ
    Biol Cybern; 2017 Dec; 111(5-6):439-458. PubMed ID: 29063191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a voltage-dependent current noise algorithm for conductance-based stochastic modelling of auditory nerve fibres.
    Badenhorst W; Hanekom T; Hanekom JJ
    Biol Cybern; 2016 Dec; 110(6):403-416. PubMed ID: 27562187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2016 Nov; 341():130-143. PubMed ID: 27594099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation.
    Bruce IC; White MW; Irlicht LS; O'Leary SJ; Clark GM
    IEEE Trans Biomed Eng; 1999 Dec; 46(12):1393-404. PubMed ID: 10612897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation.
    van Gendt MJ; Briaire JJ; Kalkman RK; Frijns JHM
    Hear Res; 2017 Aug; 351():19-33. PubMed ID: 28625417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents.
    Smit JE; Hanekom T; van Wieringen A; Wouters J; Hanekom JJ
    Hear Res; 2010 Oct; 269(1-2):12-22. PubMed ID: 20708672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the threshold of single-pulse electrical stimuli using a stochastic auditory nerve model: the effects of noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):825-35. PubMed ID: 12848350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating electrical modulation detection thresholds using a biophysical model of the auditory nerve.
    O'Brien GE; Imennov NS; Rubinstein JT
    J Acoust Soc Am; 2016 May; 139(5):2448. PubMed ID: 27250141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the threshold of pulse-train electrical stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):590-603. PubMed ID: 15072213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1040-9. PubMed ID: 15977734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of neural stochastic firing in cochlear implant stimulation by the addition of noise: a computational study of the influence of stimulation settings and spontaneous activity.
    Paglialonga A; Fiocchi S; Ravazzani P; Tognola G
    Comput Biol Med; 2010 Jun; 40(6):597-606. PubMed ID: 20471638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic population model for electrical stimulation of the auditory nerve.
    Imennov NS; Rubinstein JT
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2493-501. PubMed ID: 19304476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination.
    Javel E; Viemeister NF
    J Acoust Soc Am; 2000 Feb; 107(2):908-21. PubMed ID: 10687700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coding accuracy is not fully determined by the neuronal model.
    Kostal L; Lansky P
    Neural Comput; 2015 May; 27(5):1051-7. PubMed ID: 25710092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. I. Intensity dependence of firing rate and response latency.
    Raggio MW; Schreiner CE
    J Neurophysiol; 1994 Nov; 72(5):2334-59. PubMed ID: 7884463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of stimulus attenuation in cochlear implants.
    Smit JE; Hanekom T; Hanekom JJ
    J Neurosci Methods; 2009 Jun; 180(2):363-73. PubMed ID: 19464523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation.
    Mino H; Rubinstein JT; Miller CA; Abbas PJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):13-20. PubMed ID: 14723489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of electrode position on spatiotemporal auditory nerve fiber responses: a 3D computational model study.
    Kang S; Chwodhury T; Moon IJ; Hong SH; Yang H; Won JH; Woo J
    Comput Math Methods Med; 2015; 2015():934382. PubMed ID: 25755675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual-process integrator-resonator model of the electrically stimulated human auditory nerve.
    Macherey O; Carlyon RP; van Wieringen A; Wouters J
    J Assoc Res Otolaryngol; 2007 Mar; 8(1):84-104. PubMed ID: 17221144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.