BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29063361)

  • 1. Evaluation of raw nepodin extraction from Rumex japonicus and R. obtusifolius and their DNA polymorphisms.
    Minami M; Mori T; Yonezawa T; Saito Y; Teruya T; Woo JT
    J Nat Med; 2018 Jan; 72(1):369-374. PubMed ID: 29063361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Biofilm Formation by
    Lee JH; Kim YG; Khadke SK; Yamano A; Watanabe A; Lee J
    ACS Infect Dis; 2019 Jul; 5(7):1177-1187. PubMed ID: 31055910
    [No Abstract]   [Full Text] [Related]  

  • 3. Molecular evidence for natural hybridization between Rumex crispus and R. obtusifolius (Polygonaceae) in Korea.
    Bhandari GS; Park CW
    Sci Rep; 2022 Mar; 12(1):5423. PubMed ID: 35361815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous determination of naphthalene and anthraquinone derivatives in Rumex nepalensis Spreng. roots by HPLC: comparison of different extraction methods and validation.
    Gautam R; Srivastava A; Jachak SM
    Phytochem Anal; 2011; 22(2):153-7. PubMed ID: 21046683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimalarial activity of nepodin isolated from Rumex crispus.
    Lee KH; Rhee KH
    Arch Pharm Res; 2013 Apr; 36(4):430-5. PubMed ID: 23440579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial screening of Rumex species native to the Carpathian Basin and bioactivity-guided isolation of compounds from Rumex aquaticus.
    Orbán-Gyapai O; Liktor-Busa E; Kúsz N; Stefkó D; Urbán E; Hohmann J; Vasas A
    Fitoterapia; 2017 Apr; 118():101-106. PubMed ID: 28300698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridization between alien species Rumex obtusifolius and closely related native vulnerable species R. longifolius in a mountain tourist destination.
    Takahashi K; Hanyu M
    Sci Rep; 2015 Sep; 5():13898. PubMed ID: 26354180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antidiabetic effect of nepodin, a component of Rumex roots, and its modes of action in vitro and in vivo.
    Ha BG; Yonezawa T; Son MJ; Woo JT; Ohba S; Chung UI; Yagasaki K
    Biofactors; 2014; 40(4):436-47. PubMed ID: 24756979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on the chemical constituents of Rumex patientia].
    Liu J; Xia ZT; Zhou GR; Zhang LL; Kong LY
    Zhong Yao Cai; 2011 Jun; 34(6):893-5. PubMed ID: 22017004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-Candida and antioxidant activities of hydroalcohlic extract of Rumex obtusifolius leaves.
    Bineshian F; Bakhshandeh N; Freidounian M; Nazari H
    Pak J Pharm Sci; 2019 May; 32(3):919-926. PubMed ID: 31278700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of glucosylceramides in the Polygonaceae, Rumex obtusifolius L. injurious weed.
    Watanabe M; Miyagi A; Nagano M; Kawai-Yamada M; Imai H
    Biosci Biotechnol Biochem; 2011; 75(5):877-81. PubMed ID: 21597180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new anthraquinone from roots of Rumex japonicus.
    Chen M; Wang D; Feng Y; Yang W
    Zhongguo Zhong Yao Za Zhi; 2009 Sep; 34(17):2194-6. PubMed ID: 19943483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rumex L. species induce apoptosis in 1301, EOL-1 and H-9 cell lines.
    Wegiera M; Smolarz HD; Bogucka-Kocka A
    Acta Pol Pharm; 2012; 69(3):487-99. PubMed ID: 22594263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on the chemical constituents from Rumex japonicus Houtt].
    Zhou X; Xuan L; Zhang S
    Zhong Yao Cai; 2005 Feb; 28(2):104-5. PubMed ID: 15981880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis.
    Gautam R; Karkhile KV; Bhutani KK; Jachak SM
    Planta Med; 2010 Oct; 76(14):1564-9. PubMed ID: 20379952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-cancer effect of Rumex obtusifolius in combination with arginase/nitric oxide synthase inhibitors via downregulation of oxidative stress, inflammation, and polyamine synthesis.
    Ginovyan M; Javrushyan H; Petrosyan G; Kusznierewicz B; Koss-Mikołajczyk I; Koziara Z; Kuczyńska M; Jakubek P; Karapetyan A; Sahakyan N; Maloyan A; Bartoszek A; Avtandilyan N
    Int J Biochem Cell Biol; 2023 May; 158():106396. PubMed ID: 36918141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the Effects of Rumex obtusifolius Seed and Leaf Extracts Against Acanthamoeba: An in vitro Study.
    Nayeri T; Bineshian F; Khoshzaban F; Asl AD; Ghaffarifar F
    Infect Disord Drug Targets; 2021; 21(2):211-219. PubMed ID: 32321413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rumex japonicus Houtt.: A phytochemical, pharmacological, and pharmacokinetic review.
    Sun Y; Lenon GB; Yang AWH
    Phytother Res; 2020 Jun; 34(6):1198-1215. PubMed ID: 31849133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability of Phenolic Compound Accumulation and Antioxidant Activity in Wild Plants of Some
    Feduraev P; Skrypnik L; Nebreeva S; Dzhobadze G; Vatagina A; Kalinina E; Pungin A; Maslennikov P; Riabova A; Krol O; Chupakhina G
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of metabolic changes in oxalate-rich plant Rumex obtusifolius L. caused by ion beam irradiation.
    Miyagi A; Kitano S; Oono Y; Hase Y; Narumi I; Yamaguchi M; Uchimiya H; Kawai-Yamada M
    Plant Physiol Biochem; 2018 Jan; 122():40-45. PubMed ID: 29172104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.