These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 29063373)
1. Responses of zinc recovery to temperature and mineral composition during sphalerite bioleaching process. Xiao Y; Liu X; Fang J; Liang Y; Zhang X; Meng D; Yin H AMB Express; 2017 Oct; 7(1):190. PubMed ID: 29063373 [TBL] [Abstract][Full Text] [Related]
2. The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system. Xiao Y; Xu Y; Dong W; Liang Y; Fan F; Zhang X; Zhang X; Niu J; Ma L; She S; He Z; Liu X; Yin H Appl Microbiol Biotechnol; 2015 Dec; 99(23):10311-22. PubMed ID: 26266752 [TBL] [Abstract][Full Text] [Related]
3. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process. Xiao Y; Liu X; Dong W; Liang Y; Niu J; Gu Y; Ma L; Hao X; Zhang X; Xu Z; Yin H Arch Microbiol; 2017 Jul; 199(5):757-766. PubMed ID: 28260145 [TBL] [Abstract][Full Text] [Related]
4. Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process. Ye M; Yan P; Sun S; Han D; Xiao X; Zheng L; Huang S; Chen Y; Zhuang S Chemosphere; 2017 Feb; 168():1115-1125. PubMed ID: 27884516 [TBL] [Abstract][Full Text] [Related]
5. Microbial communities from different subsystems in biological heap leaching system play different roles in iron and sulfur metabolisms. Xiao Y; Liu X; Ma L; Liang Y; Niu J; Gu Y; Zhang X; Hao X; Dong W; She S; Yin H Appl Microbiol Biotechnol; 2016 Aug; 100(15):6871-6880. PubMed ID: 27094188 [TBL] [Abstract][Full Text] [Related]
6. The effects of Fe(II) and Fe(III) concentration and initial pH on microbial leaching of low-grade sphalerite ore in a column reactor. Mousavi SM; Yaghmaei S; Vossoughi M; Roostaazad R; Jafari A; Ebrahimi M; Chabok OH; Turunen I Bioresour Technol; 2008 May; 99(8):2840-5. PubMed ID: 17698352 [TBL] [Abstract][Full Text] [Related]
7. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process. Han Y; Ma X; Zhao W; Chang Y; Zhang X; Wang X; Wang J; Huang Z J Biosci Bioeng; 2013 Oct; 116(4):465-71. PubMed ID: 23673133 [TBL] [Abstract][Full Text] [Related]
8. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. Bayat B; Sari B J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247 [TBL] [Abstract][Full Text] [Related]
9. Microbial diversity in acid mineral bioleaching systems of dongxiang copper mine and Yinshan lead-zinc mine. He Z; Xiao S; Xie X; Hu Y Extremophiles; 2008 Mar; 12(2):225-34. PubMed ID: 18157706 [TBL] [Abstract][Full Text] [Related]
10. Decontamination of heavy metal laden sewage sludge with simultaneous solids reduction using thermophilic sulfur and ferrous oxidizing species. Mehrotra A; Kundu K; Sreekrishnan TR J Environ Manage; 2016 Feb; 167():228-35. PubMed ID: 26686075 [TBL] [Abstract][Full Text] [Related]
11. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. Zhang X; Niu J; Liang Y; Liu X; Yin H BMC Genet; 2016 Jan; 17():21. PubMed ID: 26781463 [TBL] [Abstract][Full Text] [Related]
12. Insights into functional genes and taxonomical/phylogenetic diversity of microbial communities in biological heap leaching system and their correlation with functions. Xiao Y; Liu X; Liang Y; Niu J; Zhang X; Ma L; Hao X; Gu Y; Yin H Appl Microbiol Biotechnol; 2016 Nov; 100(22):9745-9756. PubMed ID: 27629125 [TBL] [Abstract][Full Text] [Related]
13. A greener approach for resource recycling: Manganese bioleaching. Ghosh S; Mohanty S; Akcil A; Sukla LB; Das AP Chemosphere; 2016 Jul; 154():628-639. PubMed ID: 27104228 [TBL] [Abstract][Full Text] [Related]
14. Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans. Konishi Y; Kubo H; Asai S Biotechnol Bioeng; 1992 Jan; 39(1):66-74. PubMed ID: 18600888 [TBL] [Abstract][Full Text] [Related]
15. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Bayat O; Sever E; Bayat B; Arslan V; Poole C Appl Biochem Biotechnol; 2009 Jan; 152(1):117-26. PubMed ID: 18581266 [TBL] [Abstract][Full Text] [Related]
16. Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses. Patel BC; Tipre DR; Dave SR Bioresour Technol; 2012 Aug; 118():483-9. PubMed ID: 22717567 [TBL] [Abstract][Full Text] [Related]
17. Towards Bioleaching of a Vanadium Containing Magnetite for Metal Recovery. Bellenberg S; Turner S; Seidel L; van Wyk N; Zhang R; Sachpazidou V; Embile RF; Walder I; Leiviskä T; Dopson M Front Microbiol; 2021; 12():693615. PubMed ID: 34276626 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs. Mehrotra A; Sreekrishnan TR Environ Technol; 2017 Nov; 38(21):2709-2724. PubMed ID: 28043205 [TBL] [Abstract][Full Text] [Related]
19. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Li Y; Kawashima N; Li J; Chandra AP; Gerson AR Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420 [TBL] [Abstract][Full Text] [Related]
20. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. Wang X; Ma L; Wu J; Xiao Y; Tao J; Liu X Bioresour Technol; 2020 Jul; 308():123273. PubMed ID: 32247948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]