These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Chemotherapeutic strategies against Trypanosoma brucei: drug targets vs. drug targeting. Lüscher A; de Koning HP; Mäser P Curr Pharm Des; 2007; 13(6):555-67. PubMed ID: 17346174 [TBL] [Abstract][Full Text] [Related]
3. Trypanosoma brucei s.l.: Microsatellite markers revealed high level of multiple genotypes in the mid-guts of wild tsetse flies of the Fontem sleeping sickness focus of Cameroon. Simo G; Njitchouang GR; Njiokou F; Cuny G; Asonganyi T Exp Parasitol; 2011 Jul; 128(3):272-8. PubMed ID: 21376044 [TBL] [Abstract][Full Text] [Related]
4. Spatial distribution and trypanosome infection of tsetse flies in the sleeping sickness focus of Zimbabwe in Hurungwe District. Shereni W; Anderson NE; Nyakupinda L; Cecchi G Parasit Vectors; 2016 Nov; 9(1):605. PubMed ID: 27884172 [TBL] [Abstract][Full Text] [Related]
5. Trypanosoma brucei: identification of trypanosomes with genotypic similarity to human infective isolates in tsetse isolated from a region free of human sleeping sickness. Hide G; Tilley A; Welburn SC; Maudlin I; Tait A Exp Parasitol; 2000 Oct; 96(2):67-74. PubMed ID: 11052865 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization of field isolates of human pathogenic trypanosomes. Gibson W Trop Med Int Health; 2001 May; 6(5):401-6. PubMed ID: 11348534 [TBL] [Abstract][Full Text] [Related]
7. Oxidative Phosphorylation Is Required for Powering Motility and Development of the Sleeping Sickness Parasite Trypanosoma brucei in the Tsetse Fly Vector. Dewar CE; Casas-Sanchez A; Dieme C; Crouzols A; Haines LR; Acosta-Serrano Á; Rotureau B; Schnaufer A mBio; 2022 Feb; 13(1):e0235721. PubMed ID: 35012336 [TBL] [Abstract][Full Text] [Related]
8. Trypanosome alternative oxidase, a potential therapeutic target for sleeping sickness, is conserved among Trypanosoma brucei subspecies. Nakamura K; Fujioka S; Fukumoto S; Inoue N; Sakamoto K; Hirata H; Kido Y; Yabu Y; Suzuki T; Watanabe Y; Saimoto H; Akiyama H; Kita K Parasitol Int; 2010 Dec; 59(4):560-4. PubMed ID: 20688188 [TBL] [Abstract][Full Text] [Related]
9. Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania. Simwango M; Ngonyoka A; Nnko HJ; Salekwa LP; Ole-Neselle M; Kimera SI; Gwakisa PS Parasit Vectors; 2017 Oct; 10(1):507. PubMed ID: 29061160 [TBL] [Abstract][Full Text] [Related]
13. Trypanosome infection rates in tsetse flies in the "silent" sleeping sickness focus of Bafia in the Centre Region in Cameroon. Simo G; Fongho P; Farikou O; Ndjeuto-Tchouli PI; Tchouomene-Labou J; Njiokou F; Asonganyi T Parasit Vectors; 2015 Oct; 8():528. PubMed ID: 26458386 [TBL] [Abstract][Full Text] [Related]
14. Genomic Occupancy of the Bromodomain Protein Bdf3 Is Dynamic during Differentiation of African Trypanosomes from Bloodstream to Procyclic Forms. Ashby E; Paddock L; Betts HL; Liao J; Miller G; Porter A; Rollosson LM; Saada C; Tang E; Wade SJ; Hardin J; Schulz D mSphere; 2022 Jun; 7(3):e0002322. PubMed ID: 35642518 [TBL] [Abstract][Full Text] [Related]
15. Impact of mass chemotherapy in domestic livestock for control of zoonotic T. b. rhodesiense human African trypanosomiasis in Eastern Uganda. Fyfe J; Picozzi K; Waiswa C; Bardosh KL; Welburn SC Acta Trop; 2017 Jan; 165():216-229. PubMed ID: 27570206 [TBL] [Abstract][Full Text] [Related]