These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 29063757)
61. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Fang C; Shi B; Pei YY; Hong MH; Wu J; Chen HZ Eur J Pharm Sci; 2006 Jan; 27(1):27-36. PubMed ID: 16150582 [TBL] [Abstract][Full Text] [Related]
62. PEGylation of a TLR2-agonist-based vaccine delivery system improves antigen trafficking and the magnitude of ensuing antibody and CD8 Sekiya T; Yamagishi J; Gray JHV; Whitney PG; Martinelli A; Zeng W; Wong CY; Sugimoto C; Jackson DC; Chua BY Biomaterials; 2017 Aug; 137():61-72. PubMed ID: 28544973 [TBL] [Abstract][Full Text] [Related]
63. Advanced Oxidation Protein Products-Modified Albumin Induces Differentiation of RAW264.7 Macrophages into Dendritic-Like Cells Which Is Modulated by Cell Surface Thiols. Garibaldi S; Barisione C; Marengo B; Ameri P; Brunelli C; Balbi M; Ghigliotti G Toxins (Basel); 2017 Jan; 9(1):. PubMed ID: 28075404 [TBL] [Abstract][Full Text] [Related]
64. Mannose-poly(ethylene glycol)-linked SPION targeted to antigen presenting cells for magnetic resonance imaging on lymph node. Muthiah M; Vu-Quang H; Kim YK; Rhee JH; Kang SH; Jun SY; Choi YJ; Jeong YY; Cho CS; Park IK Carbohydr Polym; 2013 Feb; 92(2):1586-95. PubMed ID: 23399193 [TBL] [Abstract][Full Text] [Related]
65. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. Liu Y; Jiao F; Qiu Y; Li W; Lao F; Zhou G; Sun B; Xing G; Dong J; Zhao Y; Chai Z; Chen C Biomaterials; 2009 Aug; 30(23-24):3934-45. PubMed ID: 19403166 [TBL] [Abstract][Full Text] [Related]
66. Pathogen-Mimicking Polymeric Nanoparticles based on Dopamine Polymerization as Vaccines Adjuvants Induce Robust Humoral and Cellular Immune Responses. Liu Q; Jia J; Yang T; Fan Q; Wang L; Ma G Small; 2016 Apr; 12(13):1744-57. PubMed ID: 26849717 [TBL] [Abstract][Full Text] [Related]
67. Nattectin a fish C-type lectin drives Th1 responses in vivo: licenses macrophages to differentiate into cells exhibiting typical DC function. Saraiva TC; Grund LZ; Komegae EN; Ramos AD; Conceição K; Orii NM; Lopes-Ferreira M; Lima C Int Immunopharmacol; 2011 Oct; 11(10):1546-56. PubMed ID: 21621644 [TBL] [Abstract][Full Text] [Related]
68. Poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion polymerization (1): dextran-based surfactants. Wu M; Dellacherie E; Durand A; Marie E Colloids Surf B Biointerfaces; 2009 Feb; 69(1):141-6. PubMed ID: 19147334 [TBL] [Abstract][Full Text] [Related]
69. 'Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics. Jenkins SI; Weinberg D; Al-Shakli AF; Fernandes AR; Yiu HHP; Telling ND; Roach P; Chari DM J Control Release; 2016 Feb; 224():136-145. PubMed ID: 26780172 [TBL] [Abstract][Full Text] [Related]
70. Nanoparticles' properties modify cell type-dependent distribution in immune cells. Youshia J; Ali ME; Stein V; Lamprecht A Nanomedicine; 2020 Oct; 29():102244. PubMed ID: 32561256 [TBL] [Abstract][Full Text] [Related]
71. Spleen capture of nanoparticles: influence of animal species and surface characteristics. Demoy M; Andreux JP; Weingarten C; Gouritin B; Guilloux V; Couvreur P Pharm Res; 1999 Jan; 16(1):37-41. PubMed ID: 9950276 [TBL] [Abstract][Full Text] [Related]
72. Dextran as protectant against damage caused by sparging for hybridoma cells in a bubble column. van der Pol LA; Paijens I; Tramper J J Biotechnol; 1995 Dec; 43(2):103-10. PubMed ID: 8562016 [TBL] [Abstract][Full Text] [Related]
73. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Dobrovolskaia MA; Aggarwal P; Hall JB; McNeil SE Mol Pharm; 2008; 5(4):487-95. PubMed ID: 18510338 [TBL] [Abstract][Full Text] [Related]
74. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Wibroe PP; Anselmo AC; Nilsson PH; Sarode A; Gupta V; Urbanics R; Szebeni J; Hunter AC; Mitragotri S; Mollnes TE; Moghimi SM Nat Nanotechnol; 2017 Jul; 12(6):589-594. PubMed ID: 28396605 [TBL] [Abstract][Full Text] [Related]
75. Multifunctional Glycoconjugate Assisted Nanocrystalline Drug Delivery for Tumor Targeting and Permeabilization of Lysosomal-Mitochondrial Membrane. Pandey G; Mittapelly N; Banala VT; Mishra PR ACS Appl Mater Interfaces; 2018 May; 10(20):16964-16976. PubMed ID: 29726253 [TBL] [Abstract][Full Text] [Related]
76. Protein corona-mediated targeting of nanocarriers to B cells allows redirection of allergic immune responses. Shen L; Tenzer S; Storck W; Hobernik D; Raker VK; Fischer K; Decker S; Dzionek A; Krauthäuser S; Diken M; Nikolaev A; Maxeiner J; Schuster P; Kappel C; Verschoor A; Schild H; Grabbe S; Bros M J Allergy Clin Immunol; 2018 Nov; 142(5):1558-1570. PubMed ID: 29382591 [TBL] [Abstract][Full Text] [Related]
77. Biomimetic nanomaterials in myocardial infarction treatment: Harnessing bionic strategies for advanced therapeutics. Yu T; Xu Q; Chen X; Deng X; Chen N; Kou MT; Huang Y; Guo J; Xiao Z; Wang J Mater Today Bio; 2024 Apr; 25():100957. PubMed ID: 38322664 [TBL] [Abstract][Full Text] [Related]
78. Targeted Therapy of Acute Liver Injury via Cryptotanshinone-Loaded Biomimetic Nanoparticles Derived from Mesenchymal Stromal Cells Driven by Homing. Zhang X; Yi Y; Jiang Y; Liao J; Yang R; Deng X; Zhang L Pharmaceutics; 2023 Dec; 15(12):. PubMed ID: 38140104 [TBL] [Abstract][Full Text] [Related]
79. The Role of Mucoadhesion and Mucopenetration in the Immune Response Induced by Polymer-Based Mucosal Adjuvants. Vasquez-Martínez N; Guillen D; Moreno-Mendieta SA; Sanchez S; Rodríguez-Sanoja R Polymers (Basel); 2023 Mar; 15(7):. PubMed ID: 37050229 [TBL] [Abstract][Full Text] [Related]