BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 29063765)

  • 1. Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform.
    Nicoli F; Barth A; Bae W; Neukirchinger F; Crevenna AH; Lamb DC; Liedl T
    ACS Nano; 2017 Nov; 11(11):11264-11272. PubMed ID: 29063765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating DNA Photonic Wires into Light-Harvesting Supramolecular Polymers.
    Kownacki M; Langenegger SM; Liu SX; Häner R
    Angew Chem Int Ed Engl; 2019 Jan; 58(3):751-755. PubMed ID: 30353636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
    Spillmann CM; Ancona MG; Buckhout-White S; Algar WR; Stewart MH; Susumu K; Huston AL; Goldman ER; Medintz IL
    ACS Nano; 2013 Aug; 7(8):7101-18. PubMed ID: 23844838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled quantum dot-sensitized multivalent DNA photonic wires.
    Boeneman K; Prasuhn DE; Blanco-Canosa JB; Dawson PE; Melinger JS; Ancona M; Stewart MH; Susumu K; Huston A; Medintz IL
    J Am Chem Soc; 2010 Dec; 132(51):18177-90. PubMed ID: 21141858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Excitation Transfer in Cy5 DNA Photonic Wires Displays Dye Conjugation and Excitation Energy Dependency.
    Mazuski RJ; Díaz SA; Wood RE; Lloyd LT; Klein WP; Mathur D; Melinger JS; Engel GS; Medintz IL
    J Phys Chem Lett; 2020 May; 11(10):4163-4172. PubMed ID: 32391695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single Molecule Polyphenylene-Vinylene Photonic Wire.
    Madsen M; Bakke MR; Gudnason DA; Sandahl AF; Hansen RA; Knudsen JB; Kodal ALB; Birkedal V; Gothelf KV
    ACS Nano; 2021 Jun; 15(6):9404-9411. PubMed ID: 33938214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembling programmable FRET-based photonic networks using designer DNA scaffolds.
    Buckhout-White S; Spillmann CM; Algar WR; Khachatrian A; Melinger JS; Goldman ER; Ancona MG; Medintz IL
    Nat Commun; 2014 Dec; 5():5615. PubMed ID: 25504073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule Characterization of Cy3.5 -Cy5.5 Dye Pair for FRET Studies of Nucleic Acids and Nucleosomes.
    Ghoneim M; Musselman CA
    J Fluoresc; 2023 Mar; 33(2):413-421. PubMed ID: 36435903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Long-Range, Directional Energy Transfer through DNA-Templated Dye Aggregates.
    Zhou X; Mandal S; Jiang S; Lin S; Yang J; Liu Y; Whitten DG; Woodbury NW; Yan H
    J Am Chem Soc; 2019 May; 141(21):8473-8481. PubMed ID: 31006232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule FRET ruler based on rigid DNA origami blocks.
    Stein IH; Schüller V; Böhm P; Tinnefeld P; Liedl T
    Chemphyschem; 2011 Feb; 12(3):689-95. PubMed ID: 21308944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami.
    Stein IH; Steinhauer C; Tinnefeld P
    J Am Chem Soc; 2011 Mar; 133(12):4193-5. PubMed ID: 21250689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Förster resonance energy transfer.
    Sabanayagam CR; Eid JS; Meller A
    J Chem Phys; 2005 Dec; 123(22):224708. PubMed ID: 16375496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of dye-dye interactions on the spatial resolution of single-molecule FRET measurements in nucleic acids.
    Di Fiori N; Meller A
    Biophys J; 2010 May; 98(10):2265-72. PubMed ID: 20483335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series*.
    Gebhardt C; Lehmann M; Reif MM; Zacharias M; Gemmecker G; Cordes T
    Chemphyschem; 2021 Aug; 22(15):1566-1583. PubMed ID: 34185946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance energy transfer in DNA duplexes labeled with localized dyes.
    Cunningham PD; Khachatrian A; Buckhout-White S; Deschamps JR; Goldman ER; Medintz IL; Melinger JS
    J Phys Chem B; 2014 Dec; 118(50):14555-65. PubMed ID: 25397906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Origami-Based Förster Resonance Energy-Transfer Nanoarrays and Their Application as Ratiometric Sensors.
    Choi Y; Kotthoff L; Olejko L; Resch-Genger U; Bald I
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23295-23302. PubMed ID: 29916243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homo-FRET enhanced ratiometric fluorescence strategy for exonuclease III activity detection.
    Zhang X; Bai Y; Jiang Y; Wang N; Yang F; Zhan L; Huang C
    Anal Methods; 2021 Mar; 13(12):1489-1494. PubMed ID: 33690735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photon statistics and dynamics of fluorescence resonance energy transfer.
    Berglund AJ; Doherty AC; Mabuchi H
    Phys Rev Lett; 2002 Aug; 89(6):068101. PubMed ID: 12190612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.