BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29063768)

  • 1. The Role of Repulsion in Colloidal Crystal Engineering with DNA.
    Seo SE; Li T; Senesi AJ; Mirkin CA; Lee B
    J Am Chem Soc; 2017 Nov; 139(46):16528-16535. PubMed ID: 29063768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal crystal engineering with metal-organic framework nanoparticles and DNA.
    Wang S; Park SS; Buru CT; Lin H; Chen PC; Roth EW; Farha OK; Mirkin CA
    Nat Commun; 2020 May; 11(1):2495. PubMed ID: 32427872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices.
    Gabrys PA; Zornberg LZ; Macfarlane RJ
    Small; 2019 Jun; 15(26):e1805424. PubMed ID: 30970182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Observation of Interactions between Nanoparticles and Nanoparticle Self-Assembly in Solution.
    Tan SF; Chee SW; Lin G; Mirsaidov U
    Acc Chem Res; 2017 Jun; 50(6):1303-1312. PubMed ID: 28485945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion.
    Wang MX; Brodin JD; Millan JA; Seo SE; Girard M; Olvera de la Cruz M; Lee B; Mirkin CA
    Nano Lett; 2017 Aug; 17(8):5126-5132. PubMed ID: 28731353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terminal-Specific Interaction between Double-Stranded DNA Layers: Colloidal Dispersion Behavior and Surface Force.
    Kanayama N; Sekine T; Ozasa K; Kishi S; Nyu T; Hayashi T; Maeda M
    Langmuir; 2016 Dec; 32(49):13296-13304. PubMed ID: 27951695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-programmable nanoparticle crystallization.
    Park SY; Lytton-Jean AK; Lee B; Weigand S; Schatz GC; Mirkin CA
    Nature; 2008 Jan; 451(7178):553-6. PubMed ID: 18235497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-crystal Winterbottom constructions of nanoparticle superlattices.
    Lewis DJ; Zornberg LZ; Carter DJD; Macfarlane RJ
    Nat Mater; 2020 Jul; 19(7):719-724. PubMed ID: 32203459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds.
    O'Brien MN; Lin HX; Girard M; Olvera de la Cruz M; Mirkin CA
    J Am Chem Soc; 2016 Nov; 138(44):14562-14565. PubMed ID: 27792331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional DNA-programmable assembly of nanoparticles at liquid interfaces.
    Srivastava S; Nykypanchuk D; Fukuto M; Halverson JD; Tkachenko AV; Yager KG; Gang O
    J Am Chem Soc; 2014 Jun; 136(23):8323-32. PubMed ID: 24803304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Recognition in the Colloidal World.
    Elacqua E; Zheng X; Shillingford C; Liu M; Weck M
    Acc Chem Res; 2017 Nov; 50(11):2756-2766. PubMed ID: 28984441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering DNA-mediated colloidal crystallization.
    Kim AJ; Biancaniello PL; Crocker JC
    Langmuir; 2006 Feb; 22(5):1991-2001. PubMed ID: 16489780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices.
    Samanta D; Iscen A; Laramy CR; Ebrahimi SB; Bujold KE; Schatz GC; Mirkin CA
    J Am Chem Soc; 2019 Dec; 141(51):19973-19977. PubMed ID: 31840998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equilibrium cluster formation in concentrated protein solutions and colloids.
    Stradner A; Sedgwick H; Cardinaux F; Poon WC; Egelhaaf SU; Schurtenberger P
    Nature; 2004 Nov; 432(7016):492-5. PubMed ID: 15565151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallization of DNA-capped gold nanoparticles in high-concentration, divalent salt environments.
    Tan SJ; Kahn JS; Derrien TL; Campolongo MJ; Zhao M; Smilgies DM; Luo D
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1316-9. PubMed ID: 24459055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersions based on noble metal nanoparticles-DNA conjugates.
    Capek I
    Adv Colloid Interface Sci; 2011 Apr; 163(2):123-43. PubMed ID: 21382609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformations in crystals of DNA-functionalized nanoparticles by electrolytes.
    John-Erik Reinertsen R; Jiménez-Ángeles F; Kewalramani S; Bedzyk M; Olvera de la Cruz M
    Faraday Discuss; 2024 Feb; 249(0):408-423. PubMed ID: 37791509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Crystal Texture in Programmable Atom Equivalent Thin Films.
    Gabrys PA; Macfarlane RJ
    ACS Nano; 2019 Jul; 13(7):8452-8460. PubMed ID: 31268681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Interparticle Distance within Dimers in Solution Measured by Light Scattering.
    van Vliembergen RWL; van IJzendoorn LJ; Prins MWJ
    Langmuir; 2018 Jan; 34(1):179-186. PubMed ID: 29183122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.