BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29063930)

  • 1. Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes.
    Ben-Jaber S; Peveler WJ; Quesada-Cabrera R; Sol CWO; Papakonstantinou I; Parkin IP
    Nanoscale; 2017 Nov; 9(42):16459-16466. PubMed ID: 29063930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing.
    Lee HK; Lee YH; Zhang Q; Phang IY; Tan JM; Cui Y; Ling XY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11409-18. PubMed ID: 24134617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust and cost-effective silver dendritic nanostructures for SERS-based trace detection of RDX and ammonium nitrate.
    Vendamani VS; Rao SVSN; Pathak AP; Soma VR
    RSC Adv; 2020 Dec; 10(73):44747-44755. PubMed ID: 35516256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instantaneous trace detection of nitro-explosives and mixtures with nanotextured silicon decorated with Ag-Au alloy nanoparticles using the SERS technique.
    Moram SSB; Shaik AK; Byram C; Hamad S; Soma VR
    Anal Chim Acta; 2020 Mar; 1101():157-168. PubMed ID: 32029107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SERS based detection of multiple analytes from dye/explosive mixtures using picosecond laser fabricated gold nanoparticles and nanostructures.
    Byram C; Moram SSB; Soma VR
    Analyst; 2019 Mar; 144(7):2327-2336. PubMed ID: 30768076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vapor phase detection of explosives by surface enhanced Raman scattering under ambient conditions with metal nanogap structures.
    Adhikari S; Noh D; Kim M; Ahn D; Jang Y; Oh E; Lee D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():123996. PubMed ID: 38350410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species.
    Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY
    Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explosive vapour/particles detection using SERS substrates and a hand-held Raman detector.
    Heleg-Shabtai V; Zaltsman A; Sharon M; Sharabi H; Nir I; Marder D; Cohen G; Ron I; Pevzner A
    RSC Adv; 2021 Jul; 11(42):26029-26036. PubMed ID: 35479444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diazotization-Coupling Reaction-Based Determination of Tyrosine in Urine Using Ag Nanocubes by Surface-Enhanced Raman Spectroscopy.
    Lu Y; Lu D; You R; Liu J; Huang L; Su J; Feng S
    Nanomaterials (Basel); 2018 Jun; 8(6):. PubMed ID: 29865274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.
    Hakonen A; Andersson PO; Stenbæk Schmidt M; Rindzevicius T; Käll M
    Anal Chim Acta; 2015 Sep; 893():1-13. PubMed ID: 26398417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure.
    Banchelli M; Tiribilli B; Pini R; Dei L; Matteini P; Caminati G
    Beilstein J Nanotechnol; 2016; 7():9-21. PubMed ID: 26925348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual function surface-enhanced Raman active extractor for the detection of environmental contaminants.
    Bhandari D; Walworth MJ; Sepaniak MJ
    Appl Spectrosc; 2009 May; 63(5):571-8. PubMed ID: 19470216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimetallic Ag-Au alloy nanocubes for SERS based sensitive detection of explosive molecules.
    Kumar G; Soni RK
    Nanotechnology; 2020 Dec; 31(50):505504. PubMed ID: 33021229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-enhanced Raman spectroscopy of organic molecules adsorbed on metallic nanoparticles.
    Heleg-Shabtai V; Zifman A; Kendler S
    Adv Exp Med Biol; 2012; 733():53-61. PubMed ID: 22101712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules.
    Li Y; Zhang K; Zhao J; Ji J; Ji C; Liu B
    Talanta; 2016 Jan; 147():493-500. PubMed ID: 26592638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic reaction regulated surface-enhanced Raman scattering for detection of trace formaldehyde.
    Liu Q; Zeng X; Tian Y; Hou X; Wu L
    Talanta; 2019 Sep; 202():274-278. PubMed ID: 31171182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of SERS swab for direct detection of trace explosives in fingerprints.
    Gong Z; Du H; Cheng F; Wang C; Wang C; Fan M
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21931-7. PubMed ID: 25455731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocellulose-based Surface-enhanced Raman spectroscopy sensor for highly sensitive detection of TNT.
    Wu J; Feng Y; Zhang L; Wu W
    Carbohydr Polym; 2020 Nov; 248():116766. PubMed ID: 32919562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants.
    Yazdi SH; White IM
    Anal Chem; 2012 Sep; 84(18):7992-8. PubMed ID: 22924879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.